![R语言的协作伙伴_第1页](http://file4.renrendoc.com/view5/M00/1E/2F/wKhkGGYfWHuAIzZsAADpojAIcyY134.jpg)
![R语言的协作伙伴_第2页](http://file4.renrendoc.com/view5/M00/1E/2F/wKhkGGYfWHuAIzZsAADpojAIcyY1342.jpg)
![R语言的协作伙伴_第3页](http://file4.renrendoc.com/view5/M00/1E/2F/wKhkGGYfWHuAIzZsAADpojAIcyY1343.jpg)
![R语言的协作伙伴_第4页](http://file4.renrendoc.com/view5/M00/1E/2F/wKhkGGYfWHuAIzZsAADpojAIcyY1344.jpg)
![R语言的协作伙伴_第5页](http://file4.renrendoc.com/view5/M00/1E/2F/wKhkGGYfWHuAIzZsAADpojAIcyY1345.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Copilot
for
R/revodavid/copilot-for-r@revodavid
at@NYHACKRwhat
it
doeshow
to
use
it,
andhow
it
worksDavid
Smith
(@revodavid)Principal
Cloud
AdvocateMicrosoftTalk
Notes:/revodavid/copilot-for-rUses
the
context
you’ve
providedand
synthesizes
code
to
matchConvert
comments
to
codeAutofill
for
repetitive
codeAutosuggest
testsShow
alternativesGitHubCopilotYour
AI
pair
programmer/revodavid/copilot-for-r@revodavid
at@NYHACKRaka.ms/get-copilot/revodavid/copilot-for-r@revodavid
at@NYHACKR/revodavid/copilot-for-r@revodavid
at@NYHACKRR
Pumpkins
Demo/revodavid/copilot-for-r@revodavid
at@NYHACKR/revodavid/copilot-for-r@revodavid
at@NYHACKRGenerative
AI
Models/revodavid/copilot-for-r@revodavid
at@NYHACKRGenerative
AIPrompt:Write
a
tagline
for
an
ice
creamshop.Response:We
serve
up
smiles
with
everyscoop!Prompt:Table
customers,
columns
=[CustomerId,
FirstName,LastName,
Company,
Address,City,
State,
Country,PostalCode]Create
a
SQL
query
for
allcustomers
in
Texas
named
Janequery=Response:SELECT
*FROM
customersWHERE
State
=
'TX'
AND
FirstName=
'Jane'Response:GPT-3CodexDALL·EPrompt:
A
white
Siamese
catGenerative
AIcan:Generate
text,
images
and
codeDifferent
models
aretrained
on
different
corpuses,depending
on
the
application.Generate
“humanlike”
outputWhat
is
a
likelycontinuation
of
the
prompt,
giventhe
training
data?/revodavid/copilot-for-r@revodavid
at@NYHACKRExtract
informationThe
continuation
is
likely
to
be
similar
to
textfrequently
represented
in
thetraining
data.Createnovel
contentText,
images
and
code
not
contained
in
its
trainingset.
Translations.“Creative”
works.IntelligentIt’sjust
a
predictivesystem,
designed
to
give
a
likelycontinuation
of
the
prompt
given
the
training
data.DeterministicRun
the
same
prompt.
Get
back
a
differentresponse
(probably)./revodavid/copilot-for-r@revodavid
at@NYHACKRTrustworthyIt
can
“hallucinate”facts
andconfidently
assertthem
to
be
true.Generative
AIis
not:TODOLearnThe
model
is
fixed
at
the
time
of
its
training./revodavid/copilot-for-r@revodavid
at@NYHACKRContain
all
of
the
information
of
itstraining
setThink:a
blurry
jpeg
of
its
training
data.Include
verbatim
copies
of
its
trainingdataBut
it
can
generate
stuff
that
looks
like
it.Generative
AIdoes
not:Generative
AIdoesn’t:Understand
languageIt’s
just
a
predictive
engine.
Itdoesn’t
understandmath,either.Understand
factsMany
predictions
echo
information
inthe
trainingset,but
this
is
not
guaranteed./revodavid/copilot-for-r@revodavid
at@NYHACKRUnderstand
manners,
emotion
orethicsAlso:
avoid
anthropomorphizingit.Understand
anythingIt’s
just
a
prediction
engine!Prompt
–
Text
input
thatprovides
some
context
to
theengine
on
what
isexpecting.Completion
–
Output
thatGPT-3
generatesbasedonthe
prompt
and
the
trainedmodel.Prompt
Engineering
(very
briefly)Ensure
that
artificialgeneral
intelligence
(AGI)benefits
humanity.Empowerevery
person
andorganization
on
the
planetto
achieve
moreGPT-3Generate
and
UnderstandTextCodexGenerate
and
Understand
CodeDALL·EGenerate
images
from
textprompts/revodavid/copilot-for-r@revodavid
at@NYHACKRDemo:
Azure
OpenAI
Service/revodavid/copilot-for-r@revodavid
at@NYHACKRof
new
code
written
with
CopilotGitHubCopilotOnce
enabled…40%/revodavid/copilot-for-r@revodavid
at@NYHACKRof
devsfelt
morefulfilled
with
their
jobs87%of
devs
said
it
helpedpreserve
mental
effort75%Azure
OpenAI
ServiceGPT-3CodexDALL·E
(preview)/revodavid/copilot-for-r@revodavid
at@NYHACKRThank
you!/revodavid/copilot-for-r@revodavid
at@NYHACKRaka.ms/get-copilot/revodavid/copilot-for-rDavid
Smith
(@revodavid)Principal
Cloud
Advocate,
MicrosoftBonus
slides/revodavid/copilot-for-r@revodavid
at@NYHACKRFor
Q&A1956Artificial
Intelligence1997Machine
Learning2017Deep
Learning2021Generative
AIReliability
&
SafetyPrivacy
&
SecurityFairnessOurPrinciplesInclusivenessTransparencyAccountability@revodavid
at@NYHACKR/revodavid/copilot-for-rInferencing
timeCapabilityCurieAnswering
questionsComplex,
nuanced
classificationDavinciSummarizing
forspecific
audienceGenerating
creative
contentBabbageSemantic
searchrankingModeratelycomplexclassificationAdaSimple
classificationParsing
and
formatting
textAzure
OpenAI
Service
modelsCushman-codexDavinci-codexCapabilityCodexGPT-3ModelRequestDescription,
performance,
costUse
casesDavinci4,000
tokensMost
capable
GPT-3model.
Can
doComplex
intent,
cause
andany
task
the
other
models
can
do,effect,
summarization
foroften
with
higher
quality,
longer
outputaudienceand
better
instruction-following.Curie2048
tokensVery
capable,
but
faster
and
lower
costLanguage
translation,than
Davinci.complex
classification,textsentiment,
summarizationBabbage2048
tokensCapable
of
straightforward
tasks,
veryModerate
classification,fast,
and
lower
cost.semantic
search
classificationAda2048
tokensCapable
of
very
simple
tasks,
usuallyParsing
text,
simplethe
fastest
model
in
the
GPT-3
series,classification,
addressand
lowest
cost.correction,
keywordsAzure
OpenAI
|
GPT-3
Family
of
ModelsAccelerates
software
developmentMakes
APIs
moreaccessibleWidens
who
can
codeOpenAI
CodexOpenAI
Codex
ModelsDerived
from
base
models
and
trained
on
bothNLand
code
(billions
ofLines
ofCode)Supp
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 工程固定总价合同范本
- 2025年南京考货运资格证考试内容
- 塑料模具开模合同范本
- 个人入股合作协议书范本
- 2025年南通货运资格证考试真题
- 2025年滁州货运资格证模拟考试题库
- 绿色农业种植技术与生态农业园区规划
- 交通运输网络规划与管理方案
- 2025年度办公用品行业大数据分析与应用合作协议
- 二零二五年度甲级商务办公租赁免责协议
- 第八节 元代散曲
- 质量体系工程师岗位说明书
- 三年级上语文开学第一课
- 烹饪刀工与原料成型技术课件
- 消防设施维护与日常检查培训讲义
- 最新安全生产管理教材电子版
- 良性阵发性位置性眩晕完整版本课件
- 典当业务计划方案
- 老化箱点检表A4版本
- 音标教学课件(共73张PPT)
- 2012数据结构英文试卷A及答案
评论
0/150
提交评论