版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
安徽省淮南市名校2024年八年级下册数学期末经典试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每小题3分,共30分)1.如图,在平面直角坐标系中,有若干个整数点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(3,1),(A.(14,-1) B.(14,0) C.(2.为了参加我市组织的“我爱家乡美”系列活动,某校准备从九年级四个班中选出一个班的7名学生组建舞蹈队,要求各班选出的学生身高较为整齐,且平均身高约为1.6m.根据各班选出的学生,测量其身高,计算得到的数据如右表所示,学校应选择()学生平均身高(单位:m)标准差九(1)班1.570.3九(2)班1.570.7九(3)班1.60.3九(4)班1.60.7A.九(1)班 B.九(2)班 C.九(3)班 D.九(4)班3.一家鞋店对上周某一品牌女鞋的销售量统计如下:尺码/厘米2222.52323.52424.525销售量/双12511731该鞋店决定本周多进一些尺码为23.5厘米的该品牌女鞋,影响鞋店决策的统计量是()A.方差 B.中位数 C.平均数 D.众数4.如图,小亮将升旗的绳子拉到旗杆底端,绳子末端刚好接触到地面,然后将绳子末端拉到距离旗杆8m处,发现此时绳子末端距离地面2m,则旗杆的高度(滑轮上方的部分忽略不计)为()A.12m B.13m C.16m D.17m5.下表是小红填写的实践活动报告的部分内容:设铁塔顶端到地面的高度为,根据以上条件,可以列出的方程为()A. B.C. D.6.如图是可以自由转动的转盘,转盘被等分成三个扇形,并分别标上1,2,3,转盘停止后,则指针指向的数字为偶数的概率是()A. B. C. D.7.下列运算正确的是()A. B.C. D.8.直角梯形的一个内角为,较长的腰为6,一底为5,则这个梯形的面积为()A. B. C.25 D.或9.在平面直角坐标系中,点A的坐标是(3,-4),点B的坐标是(1,2),将线段AB平移后得到线段A'B'.若点A对应点A'的坐标是(5,2),则点B'的坐标是()A.(3,6) B.(3,7) C.(3,8) D.(6,4)10.由线段a,b,c可以组成直角三角形的是()A.a=5,b=8,c=7 B.a=2,b=3,c=4C.a=24,b=7,c=25 D.a=5,b=5,c=6二、填空题(每小题3分,共24分)11.一个多边形的内角和等于1800°,它是______边形.12.如图,△ABC是边长为1的等边三角形,分别取AC,BC边的中点D,E,连接DE,作EF∥AC,得到四边形EDAF,它的周长记作C1;分别取EF,BE的中点D1,E1,连接D1E1,作E1F1∥EF,得到四边形E1D1FF1,它的周长记作C2…照此规律作下去,则C2018=_____.13.如图,D为△ABC的AC边上的一点,∠A=∠DBC=36°,∠C=72°,则图中共有等腰三角形____个.14.方程x5=81的解是_____.15.当m=_____时,x2+2(m﹣3)x+25是完全平方式.16.一元二次方程化成一般式为________.17.如图,正方形ABCD的边长是18,点E是AB边上的一个动点,点F是CD边上一点,CF=8,连接EF,把正方形ABCD沿EF折叠,使点A,D分别落在点A',D'处,当点D'落在直线BC上时,线段AE18.如图,在平面直角坐标系中直线y=−x+10与x轴,y轴分别交于A.B两点,C是OB的中点,D是线段AB上一点,若CD=OC,则点D的坐标为___三、解答题(共66分)19.(10分)如图,△ABC在直角坐标系中.(1)若把△ABC向上平移2个单位,再向左平移1个单位得到△A1B1C1,画出△A1B1C1,并写出点A1,B1,C1的坐标;(2)求△ABC的面积.20.(6分)(1)如图①所示,将绕顶点按逆时针方向旋转角,得到,,分别与、交于点、,与相交于点.求证:;(2)如图②所示,和是全等的等腰直角三角形,,与、分别交于点、,请说明,,之间的数量关系.21.(6分)解不等式3(x﹣1)≥5(x﹣3)+6,并求出它的正整数解.22.(8分)列方程或方程组解应用题:为了响应“十三五”规划中提出的绿色环保的倡议,某校文印室提出了每个人都践行“双面打印,节约用纸”.已知打印一份资料,如果用A4厚型纸单面打印,总质量为400克,将其全部改成双面打印,用纸将减少一半;如果用A4薄型纸双面打印,这份资料的总质量为160克,已知每页薄型纸比厚型纸轻0.8克,求A4薄型纸每页的质量.(墨的质量忽略不计)23.(8分)解不等式组并求其整数解的和.解:解不等式①,得_______;解不等式②,得________;把不等式①和②的解集在数轴上表示出来:原不等式组的解集为________,由数轴知其整数解为________,和为________.在解答此题的过程中我们借助于数轴上,很直观地找出了原不等式组的解集及其整数解,这就是“数形结合的思想”,同学们要善于用数形结合的思想去解决问题.24.(8分)的中线BD,CE相交于O,F,G分别是BO,CO的中点,求证:,且.25.(10分)设一次函数y=kx+b(k≠0)的图象经过A(1,3)、B(0,-2)两点,求此函数的解析式.26.(10分)如图,在平行四边形ABCD中,点E,F分别是边AD,BC上的点,且AE=CF,求证:AF=CE.
参考答案一、选择题(每小题3分,共30分)1、D【解析】
从图中可以看出横坐标为1的有一个点,横坐标为2的有2个点,横坐标为3的有3个点,…依此类推横坐标为n的有n个点.题目要求写出第100个点的坐标,我们可以通过加法计算算出第100个点位于第几列第几行,然后对应得出坐标规律,将行列数代入规律式.【详解】在横坐标上,第一列有一个点,第二列有2个点…第n个有n个点,并且奇数列点数对称而偶数列点数y轴上方比下方多一个,所以奇数列的坐标为n,n-1偶数列的坐标为n,n由加法推算可得到第100个点位于第14列自上而下第六行.代入上式得(14,142-5)故选D.【点睛】本题是一道找规律题,主要考查了点的规律.培养学生对坐平面直角坐标系的熟练运用能力是解题的关键.2、C【解析】根据标准差的意义,标准差越小数据越稳定,由于选的是学生身高较为整齐的,故要选取标准差小的,应从九(1)和九(3)里面选,再根据平均身高约为1.6m可知只有九(3)符合要求,故选C.3、D【解析】
平均数、中位数、众数是描述一组数据集中程度的统计量;方差、标准差是描述一组数据离散程度的统计量.销量大的尺码就是这组数据的众数.【详解】解:由于众数是数据中出现次数最多的数,故应最关心这组数据中的众数.故选:D.【点睛】此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.4、D【解析】
根据题意画出示意图,设旗杆高度为x,可得AC=AD=x,AB=(x﹣2)m,BC=8m,在Rt△ABC中利用勾股定理可求出x.【详解】设旗杆高度为x,则AC=AD=x,AB=(x﹣2)m,BC=8m,在Rt△ABC中,AB2+BC2=AC2,即(x﹣2)2+82=x2,解得:x=17,即旗杆的高度为17米.故选D.【点睛】考查了勾股定理的应用,解答本题的关键是构造直角三角形,构造直角三角形的一般方法就是作垂线.5、A【解析】
过D作DH⊥EF于H,则四边形DCEH是矩形,根据矩形的性质得到HE=CD=10,CE=DH,求得FH=x-10,得到CE=x-10,根据三角函数的定义列方程即可得到结论.【详解】解:过D作DH⊥EF于H,
则四边形DCEH是矩形,
∴HE=CD=10,CE=DH,
∴FH=x-10,
∵∠FDH=α=45°,
∴DH=FH=x-10,
∴CE=x-10,∴x=(x-10)tan50°,
故选:A.【点睛】本题考查了解直角三角形的应用,解题的关键是熟练运用锐角三角函数的定义,正确的识别图形,由实际问题抽象出一元一次方程.6、D【解析】
转盘转动共有三种结果,转盘停止后指向偶数的情况一种,所以概率公式求解即可.【详解】因为一共三种结果,转盘停止后指向偶数的情况一种,所以P(指向偶数)=故答案为D.【点睛】本题考查的是概率公式的应用.7、D【解析】
试题分析:A、,故A选项错误;B、,故B选项错误;C、,故C选项错误;D、,故D选项正确,故选D.考点:约分8、D【解析】试题分析:根据“直角梯形的一个内角为120°,较长的腰为6cm”可求得直角梯形的高,由于一底边长为5cm不能确定是上底还是下底,故要分两种情况讨论梯形的面积,根据梯形的面积公式=(上底+下底)×高,分别计算即可.解:根据题意可作出下图.BE为高线,BE⊥CD,即∠A=∠C=90°,∠ABD=120°,BD=6cm,∵AB∥CD,∠ABD=120°,∴∠D=60°,∴BE=6×sin60°=3cm;ED=6×cos60°=3cm;当AB=5cm时,CD=5+3=8cm,梯形的面积=cm2;当CD=5cm时,AB=5−3=2cm,梯形的面积=cm2;故梯形的面积为或,故选D.9、C【解析】
先由点A的平移结果判断出平移的方式,再根据平移的方式求出点B′的坐标即可.【详解】由点A(3,-4)对应点A′(5,2),知点A向右平移了2个单位,再向上平移了6个单位,所以,点B也是向右平移了2个单位,再向上平移了6个单位,B(1,2)平移后,变成:B′(3,8),故选C.【点睛】本题考查了平面直角坐标系中图形的平移规律.在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.10、C【解析】
由勾股定理的逆定理,只要验证两条较短边的平方和是否等于最长边的平方即可.【详解】52+72≠82,故不是直角三角形,故选项A错误;22+32≠42,故不是直角三角形,故选项B错误;72+242=252,故是直角三角形,故选项C正确;52+52≠62,故不是直角三角形,故选项D错误.
故选:C.【点睛】本题考查勾股定理的逆定理的应用,判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.二、填空题(每小题3分,共24分)11、十二【解析】
根据多边形的内角和公式列方程求解即可;【详解】设这个多边形是n边形,
由题意得,(n-2)•180°=1800°,
解得n=12;故答案为十二【点睛】本题考查了多边形的内角和,关键是掌握多边形的内角和公式.12、【解析】
根据三角形中位线定理可求出C1的值,进而可得出C2的值,找出规律即可得出C2018的值【详解】解:∵E是BC的中点,ED∥AB,∴DE是△ABC的中位线,∴DE=AB=,AD=AC=,∵EF∥AC,∴四边形EDAF是菱形,∴C1=4×;同理求得:C2=4×;…,.故答案为:.【点睛】本题考查了三角形中位线定理、等边三角形的性质、菱形的性质;熟练掌握三角形中位线定理,并能进行推理计算是解决问题的关键.13、1【解析】
由∠C=72゜,∠A=∠DBC=16゜,根据三角形内角和定理与三角形外角的性质,可求得∠ABD=∠A=16°,∠ABC=∠BCD=∠BDC=72°,继而求得答案.【详解】解:∵∠C=72゜,∠A=∠DBC=16゜,
∴∠BDC=180°-∠DBC-∠C=72°=∠C,
∴BC=BD,即△BCD是等腰三角形;
∴∠ABD=∠BDC-∠A=16°=∠A,
∴AD=BD,即△ABD是等腰三角形;
∴∠ABC=∠ABD+∠DBC=72°=∠C,
∴AB=AC,即△ABC是等腰三角形.
故答案为:1.【点睛】此题考查了等腰三角形的判定、三角形的外角的性质以及三角形内角和定理.此题难度不大,注意掌握数形结合思想的应用.14、1【解析】
方程两边同时乘以1,可得x5=241=15.即可得出结论.【详解】∵x5=81,∴x5=81×1=241=15,∴x=1,故答案为:1.【点睛】本题考查了高次方程的解法,能够把241写成15是解题的关键.15、8或﹣1【解析】
先根据两平方项确定出这两个数,再根据完全平方公式的乘积二倍项即可确定m的值.【详解】解:∵x1+1(m﹣3)x+15=x1+1(m﹣3)x+51,∴1(m﹣3)x=±1×5x,m﹣3=5或m﹣3=﹣5,解得m=8或m=﹣1.故答案为:8或﹣1.【点睛】本题主要考查了完全平方式,根据平方项确定出这两个数是解题的关键,也是难点,熟记完全平方公式对解题非常重要.16、【解析】
直接去括号,然后移项,即可得到答案.【详解】解:∵,∴,∴,故答案为:.【点睛】本题考查了一元二次方程的一般式,解题的关键是熟练掌握一元二次方程的一般式.17、4或1【解析】
分两种情况:①D′落在线段BC上,②D′落在线段BC延长线上,分别连接ED、ED′、DD′,利用折叠的性质以及勾股定理,即可得到线段AE的长.【详解】解:分两种情况:①当D′落在线段BC上时,连接ED、ED′、DD′,如图1所示:由折叠可得,D,D'关于EF对称,即EF垂直平分DD',∴DE=D′E,∵正方形ABCD的边长是18,∴AB=BC=CD=AD=18,∵CF=8,∴DF=D′F=CD−CF=10,∴CD′=D'F2-C∴BD'=BC−CD'=12,设AE=x,则BE=18−x,在Rt△AED和Rt△BED'中,由勾股定理得:DE2=AD2+AE2=182+x2,D'E2=BE2+BD'2=(18−x)2+122,∴182+x2=(18−x)2+122,解得:x=4,即AE=4;②当D′落在线段BC延长线上时,连接ED、ED′、DD′,如图2所示:由折叠可得,D,D'关于EF对称,即EF垂直平分DD',∴DE=D′E,∵正方形ABCD的边长是18,∴AB=BC=CD=AD=18,∵CF=8,∴DF=D′F=CD−CF=10,CD'=D'F2-C∴BD'=BC+CD'=24,设AE=x,则BE=18−x,在Rt△AED和Rt△BED'中,由勾股定理得:DE2=AD2+AE2=182+x2,D'E2=BE2+BD'2=(18−x)2+242,∴182+x2=(18−x)2+242,解得:x=1,即AE=1;综上所述,线段AE的长为4或1;故答案为:4或1.【点睛】本题考查了正方形的性质、折叠变换的性质、线段垂直平分线的性质、勾股定理等知识;熟练掌握折叠变换的性质,由勾股定理得出方程是解题的关键,注意分类讨论.18、(4,8)【解析】
由解析式求得B的坐标,加入求得C的坐标,OC=5,设D(x,-x+10),根据勾股定理得出x+(x-5)=25,解得x=4,即可求得D的坐标.【详解】由直线y=−x+10可知:B(0,10),∴OB=10,∵C是OB的中点,∴C(0,5),OC=5,∵CD=OC,∴CD=5,∵D是线段AB上一点,∴设D(x,-x+10),∴CD=∴解得x=4,x=0(舍去)∴D(4,8),故答案为:(4,8)【点睛】此题考查一次函数与平面直角坐标系,勾股定理,解题关键在于利用勾股定理进行计算三、解答题(共66分)19、(1)A1(-3,0),B1(2,3),C1(-1,4),图略(2)S△ABC=1【解析】
(1)根据平移的性质,结合已知点A,B,C的坐标,即可写出A1、B1、C1的坐标,(2)根据点的坐标的表示法即可写出各个顶点的坐标,根据S△ABC=S长方形ADEF﹣S△ABD﹣S△EBC﹣S△ACF,即可求得三角形的面积.【详解】(1)如图所示.根据题意得:A1、B1、C1的坐标分别是:A1(﹣3,0),B1(2,3),C1(﹣1,4);(2)S△ABC=S长方形ADEF﹣S△ABD﹣S△EBC﹣S△ACF=4×53×53×12×4=204=1.【点睛】本题考查了点的坐标的表示,以及图形的面积的计算,不规则图形的面积等于规则图形的面积的和或差.20、(1)见解析;(1)FG1=BF1+GC1.理由见解析【解析】
(1)利用ASA证明△EAF≌△BAH,再利用全等三角形的性质证明即可;
(1)结论:FG1=BF1+GC1.把△ABF旋转至△ACP,得△ABF≌△ACP,再利用三角形全等的知识证明∠ACP+∠ACB=90°,根据勾股定理进而可以证明BF、FG、GC之间的关系.【详解】(1)证明:如图①中,
∵AB=AC=AD=AE,∠CAB=∠EAD=90°,
∴∠EAF=∠BAH,∠E=∠B=45°,
∴△EAF≌△BAH(ASA),
∴AH=AF;
(1)解:结论:GF1=BF1+GC1.
理由如下:如图②中,把△ABF旋转至△ACP,得△ABF≌△ACP,
∵∠1=∠4,AF=AP,CP=BF,∠ACP=∠B,
∵∠DAE=45°
∴∠1+∠3=45°,
∴∠4+∠3=45°,
∴∠1=∠4+∠3=45°,
∵AG=AG,AF=AP,
∴△AFG≌△AGP(SAS),
∴FG=GP,
∵∠ACP+∠ACB=90°,
∴∠PCG=90°,
在Rt△PGC中,∵GP1=CG1+CP1,
又∵BF=PC,GP=FG,
∴FG1=BF1+GC1.【点睛】本题考查旋转变换,等腰直角三角形的性质,全等三角形的判定和性质以及勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.21、它的正整数解为:1,2,1.【解析】
首先利用不等式的基本性质解不等式,再从不等式的解集中找出适合条件的正整数解即可.【详解】1(x﹣1)≥5(x﹣1)+61x﹣1≥5x﹣15+6,1x﹣5x≥﹣15+6+1,﹣2x≥﹣6,∴x≤1所以它的正整数解为:1,2,1.【点睛】此题考查一元一次不等式的整数解,解题关键在于掌握运算法则22、3.2克.【解析】
设A4薄型纸每页的质量为x克,则A4厚型纸每页的质量为(x+0.8)克,然后根据“双面打印,用纸将减少一半”列方程,然后解方程即可.【详解】解:设A4薄型纸每页的质量为x克,则A4厚型纸每页的质量为(x+0.8)克,根据题意,得:,解得:x=3.2,经检验:x=3.2是原分式方程的解,且符合题意.答:A4薄型纸每页的质量为3.2克.【点睛】本题考查分式方程的应用,掌握题目中等量关系是关键,注意分式方
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 信息技术项目招投标跟踪
- 住宅小区钻孔桩施工协议
- 水库水质净化施工合同
- 物流行业工作与休息安排
- 厦门市民宿卫生防疫措施
- 学校活动巴士租赁服务合同
- 影视作品授权合同
- 互联网行业产品经理培训大纲
- 住宅小区配电房施工协议
- 运动器材公司著作权保护
- 2024年安徽省公务员录用考试《行测》试题及答案解析
- 2024年度危废培训完整课件
- 英语漫谈今日中国学习通超星期末考试答案章节答案2024年
- 福建师范大学《教育学(含教师职业道德)》2023-2024学年第一学期期末试卷
- 苹果三星专利之争
- 下肢康复机器人课件
- 《Java程序设计应用开发》全套教学课件
- 必背知识点梳理-2024-2025学年人教版生物七年级上册
- 2024-2030年全球及中国数据科学平台行业市场现状供需分析及市场深度研究发展前景及规划可行性分析研究报告
- 2024-2030年中国非物质文化遗产行业市场深度分析及竞争格局与投资策略研究报告
- 2023-2024学年部编版道德与法治三年级上册期末检测题及答案(共3套)
评论
0/150
提交评论