云南省怒江市2024届八年级数学第二学期期末统考模拟试题含解析_第1页
云南省怒江市2024届八年级数学第二学期期末统考模拟试题含解析_第2页
云南省怒江市2024届八年级数学第二学期期末统考模拟试题含解析_第3页
云南省怒江市2024届八年级数学第二学期期末统考模拟试题含解析_第4页
云南省怒江市2024届八年级数学第二学期期末统考模拟试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

云南省怒江市2024届八年级数学第二学期期末统考模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.如图,A、B两点被一座山隔开,M、N分别是AC、BC中点,测量MN的长度为40m,那么AB的长度为()A.40m B.80m C.160m D.不能确定2.关于函数y=﹣x+3,下列结论正确的是()A.它的图象必经过点(1,1) B.它的图象经过第一、二、三象限C.它的图象与y轴的交点坐标为(0,3) D.y随x的增大而增大3.下列说法正确的是()A.为了解我国中学生课外阅读的情况,应采取全面调查的方式B.一组数据1、2、5、5、5、3、3的中位数和众数都是5C.投掷一枚硬币100次,一定有50次“正面朝上”D.若甲组数据的方差是0.03,乙组数据的方差是0.1,则甲组数据比乙组数据稳定4.小颖同学准备用26元买笔和笔记本,已知一支笔2元,一本笔记本3元,他买了5本笔记本,最多还能买多少支笔?设他还能买支笔,则列出的不等式为()A. B.C. D.5.从某市5000名初一学生中,随机抽取100名学生,测得他们的身高数据,得到一个样本,则这个样本数据的平均数、中位数、众数、方差四个统计量中,服装厂最感兴趣的是()A.平均数 B.中位数 C.众数 D.方差6.如图,在Rt△ABC中,∠ACB=90°,AC=4,BC=3,CD⊥AB于D,则CD的长是()A.5 B.7 C. D.7.“”是指大气中危害健康的直径小于或等于2.5微米的颗粒物,它们含有大量的有毒、有害物质,对人体健康和大气环境质量有很大危害,2.5微米即0.0000025米.将0.0000025用科学记数法表示为()A. B. C. D.8.已知:是整数,则满足条件的最小正整数为()A.2 B.3 C.4 D.59.如图,直线的图象如图所示.下列结论中,正确的是()A. B.方程的解为;C. D.若点A(1,m)、B(3,n)在该直线图象上,则.10.若Rt△ABC中两条边的长分别为a=3,b=4,则第三边c的长为()A.5 B. C.或 D.5或二、填空题(每小题3分,共24分)11.如图,在四边形ABCD中,AB∥CD,AB=BC=BD=2,AD=1,则AC=__________.12.函数,当时,_____;当1<<2时,随的增大而_____(填写“增大”或“减小”).13.菱形的边长为,,则以为边的正方形的面积为__________.14.正方形的边长为,则这个正方形的对角线长为_________.15.如图,双曲线经过四边形OABC的顶点A、C,∠ABC=90°,OC平分OA与x轴正半轴的夹角,AB∥x轴,将△ABC沿AC翻折后得到△AB'C,B'点落在OA上,则四边形OABC的面积是_____.16.对分式和进行通分,它们的最简公分母是________.17.如图,在ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E.若BF=8,AB=5,则AE的长为__.18.二次根式中字母a的取值范围是______.三、解答题(共66分)19.(10分)(1)研究规律:先观察几个具体的式子:(2)寻找规律:(且为正整数)(3)请完成计算:20.(6分)在矩形中,,,是边上一点,以点为直角顶点,在的右侧作等腰直角.(1)如图1,当点在边上时,求的长;(2)如图2,若,求的长;(3)如图3,若动点从点出发,沿边向右运动,运动到点停止,直接写出线段的中点的运动路径长.21.(6分)如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(1,3),B(2,5),C(4,2)(每个方格的边长均为1个单位长度)(1)将△ABC平移,使点A移动到点A1,请画出△A1B1C1;(2)作出△ABC关于O点成中心对称的△A2B2C2,并直接写出A2,B2,C2的坐标;(3)△A1B1C1与△A2B2C2是否成中心对称?若是,请写出对称中心的坐标;若不是,请说明理由.22.(8分)如图,在平面直角坐标系中,菱形的顶点与原点重合,点在轴的正半轴上,点在函数的图象上,点的坐标为.(1)求的值.(2)将点沿轴正方向平移得到点,当点在函数的图象上时,求的长.23.(8分)如图,直线与直线和直线分别交于点(在的上方).直线和直线交于点,点的坐标为;求线段的长(用含的代数式表示);点是轴上一动点,且为等腰直角三角形,求的值及点的坐标.24.(8分)如图,在▱ABCD中,∠ABC的平分线交AD于点E,过点D作BE的平行线交BC于F.(1)求证:△ABE≌△CDF;(2)若AB=6,BC=8,求DE的长.25.(10分)暑假期间,小明和父母一起开车到距家200千米的景点旅游.出发前,汽车油箱内储油45升;当行驶150千米时,发现油箱剩余油量为30升.(1)已知油箱内余油量y(升)是行驶路程x(千米)的一次函数,求y与x的函数关系式;(2)当油箱中余油量少于3升时,汽车将自动报警.如果往返途中不加油,他们能否在汽车报警前回到家?请说明理由.26.(10分)分式化简:(a-)÷

参考答案一、选择题(每小题3分,共30分)1、B【解析】

根据三角形中位线定理计算即可【详解】∵M、N分别是AC、BC中点,∴NM是△ACB的中位线,∴AB=2MN=80m,故选:B.【点睛】此题考查三角形中位线定理,解题关键在于掌握运算法则2、C【解析】

根据一次函数的性质对各选项进行逐一判断即可.【详解】解:A、∵当x=1时,y=2,∴图象不经过点(1,1),故本选项错误;B、∵k=-1<0,b=3>0,∴图象经过第一、二、四象限,故本选项错误;C、∵当x=0时,y=3,∴图象与y轴的交点坐标为(0,3),故本选项正确;D、∵k=-1<0,∴y随x的增大而减小,故本选项错误,故选C.【点睛】本题考查了一次函数的性质,熟知一次函数y=kx+b(k≠0),当k>0,y随x的增大而增大,函数从左到右上升;k<0,y随x的增大而减小,函数从左到右下降是解答此题的关键.3、D【解析】

解:为了解我国中学生课外阅读的情况,应采取抽样调查的方式,故选项A错误,把数据1、2、5、5、5、3、3从小到大排列1、2、3、3、5、5、5;所以中位数为:3;5出现的次数最多,所以众数是5,故选项B错误,投掷一枚硬币100次,可能有50次“正面朝上”,但不一定有50次“正面朝上”,故选项C错误,若甲组数据的方差是0.03,乙组数据的方差是0.1,则甲组数据比乙组数据稳定,故选项D正确,故选D.【点睛】本题考查全面调查与抽样调查、中位数、众数、方差,解答本题的关键是明确它们各自的含义.4、A【解析】

设买x支笔,然后根据最多有26元钱列出不等式即可.【详解】设可买x支笔则有:2x+3×5≤26,故选A.【点睛】本题考查的是列一元一次不等式,解此类题目时要注意找出题目中不等关系即为解答本题的关键.5、C【解析】

服装厂最感兴趣的是哪种尺码的服装售量较多,也就是需要参照指标众数.【详解】由于众数是数据中出现次数最多的数,故服装厂最感兴趣的指标是众数.故选(C)【点睛】本题考查统计量的选择,解题的关键是区分平均数、中位数、众数和方差的概念与意义进行解答;6、C【解析】

首先利用勾股定理计算出AB的长,再根据三角形的面积公式计算出CD的长即可.【详解】解:∵在Rt中,∠ACB=90°,AC=4,BC=3,∴AB=∵×AC×BC=×CD×AB,∴×3×4=×5×CD,解得:CD=.故选.【点睛】本题主要考查了勾股定理,以及三角形的面积,关键是熟练掌握勾股定理:在任何一个直角三角形中,两条直角边长的平方之和等于斜边长的平方.7、D【解析】

根据科学计数法的表示方法即可求解.【详解】0.0000025=故选D.【点睛】此题主要考查科学计数法的表示,解题的关键是熟知科学计数法的表示方法.8、D【解析】试题解析:∵=,且是整数,∴2是整数,即1n是完全平方数,∴n的最小正整数为1.故选D.点睛:主要考查了乘除法法则和二次根式有意义的条件.二次根式有意义的条件是被开方数是非负数.二次根式的运算法则:乘法法则.除法法则.解题关键是分解成一个完全平方数和一个代数式的积的形式.9、B【解析】

根据函数图象可直接确定k、b的符号判断A、C,根据图象与x轴的交点坐标判断选项B,根据函数性质判断选项D.【详解】由图象得:k<0,b>0,∴A、C都错误;∵图象与x轴交于点(1,0),∴方程的解为,故B正确;∵k<0,∴y随着x的增大而减小,由1<3得m>n,故D错误,故选:B.【点睛】此题考查一次函数的图象,一次函数的性质,正确理解图象得到对应的信息是解题的关键.10、D【解析】

分情况讨论:①当a,b为直角边时,求得斜边c的长度;②当a为直角边,b为斜边时,求得另外一条直角边c的长度.【详解】解:分两种情况:

①当a,b为直角边时,第三边c==5;

②当a为直角边,b为斜边时,第三边c=.

故选D.【点睛】本题考查了勾股定理在直角三角形中的运用,本题中讨论边长为4的边是直角边还是斜边是解题的关键.二、填空题(每小题3分,共24分)11、【解析】

以B为圆心,BA长为半径作圆,延长AB交⊙B于E,连接CE,由圆周角定理的推论得,进而CE=AD=1,由直径所对的圆周角是直角,有勾股定理即可求得AC的长.【详解】如图,以B为圆心,BA长为半径作圆,延长AB交⊙B于E,连接CE,∵AB=BC=BD=2,∴C,D在⊙B上,∵AB∥CD,∴,∴CE=AD,∵AD=1,∴CE=AD=1,AE=AB+BE=2AB=4,∵AE是⊙B的直径,∴∠ACE=90º,∴AC==,故答案为.【点睛】本题借助于圆的模型把三角形的问题转化为圆的性质的问题,再解题过程中需让学生体会这种转化的方法.12、;增大.【解析】

将y=4代入,求得x的值即可,根据函数所在象限得,当1<x<2时,y随x的增大而增大.【详解】把y=4代入,得,解得x=,当k=-6时,的图象在第二、四象限,∴当1<x<2时,y随x的增大而增大;故答案为,增大.【点睛】本题考查了反比例函数的性质,重点掌握函数的增减性问题,解此题的关键是利用数形结合的思想.13、【解析】

如图,连接AC交BD于点O,得出△ABC是等边三角形,利用菱形的性质和勾股定理求得BO,得出BD,即可利用正方形的面积解决问题.【详解】解:如图,

连接AC交BD于点O,

∵在菱形ABCD中,∠ABC=60°,AB=BC,AB=4,

∴△ABC是等边三角形∠ABO=30°,AO=2,

∴BO==2,∴BD=2OB=4,

∴正方形BDEF的面积为1.

故答案为1.【点睛】本题考查菱形的性质,正方形的性质,勾股定理,等边三角形的判定与性质,注意特殊角的运用是解决问题的关键.14、1【解析】

如图(见解析),先根据正方形的性质可得,再利用勾股定理即可得.【详解】如图,四边形ABCD是边长为正方形则由勾股定理得:即这个正方形的两条对角线相等,长为1故答案为:1.【点睛】本题考查了正方形的性质、勾股定理,掌握理解正方形的性质是解题关键.15、1【解析】

如图,延长BA交y轴于E,延长BC交x轴于F,连接OC.,由题意△ACB≌△ACB',△OCF≌△OCB',推出BC=CB'=CF,设BC=CF=a,OF=BE=2b,首先证明AE=AB,再证明S△ABCS△OCF,由此即可解决问题.【详解】如图,延长BA交y轴于E,延长BC交x轴于F,连接OC.由题意△ACB≌△ACB',△OCF≌△OCB',∴BC=CB'=CF,设BC=CF=a,OF=BE=2b.∵S△AOE=S△OCF,∴2a×AE2b×a,∴AE=b,∴AE=AB=b,∴S△ABCS△OCF,S△OCB'=S△OFC=,∴S四边形OABC=S△OCB'+2S△ABC21.故答案为:1.【点睛】本题考查了反比例函数比例系数k、翻折变换等知识,解题的关键是理解反比例函数的比例系数k的几何意义,学会利用参数解决问题,属于中考常考题型.16、【解析】

根据确定最简公分母的方法是:(1)取各分母系数的最小公倍数;(2)凡单独出现的字母连同它的指数作为最简公分母的一个因式;(3)同底数幂取次数最高的,得到的因式的积就是最简公分母即可得出答案.【详解】解:分式和的最简公分母是,故答案为:.【点睛】本题考查了最简公分母的定义:通常取各分母系数的最小公倍数与字母因式的最高次幂的积作公分母,这样的公分母叫做最简公分母.通分的关键是准确求出各个分式中分母的最简公分母,确定最简公分母的方法一定要掌握.17、1【解析】

由基本作图得到,平分,故可得出四边形是菱形,由菱形的性质可知,故可得出的长,再由勾股定理即可得出的长,进而得出结论.【详解】解:连结,与交于点,四边形是平行四边形,,四边形是菱形,,,.,在中,,.故答案为:1.【点睛】本题考查的是作图基本作图,熟知平行四边形的性质、勾股定理、平行线的性质是解决问题的关键.18、.【解析】

运用二次根式中的被开方数的非负性进行求解即可,即有意义,则a≥0.【详解】解:由题意得2a+5≥0,解得:.故答案为.【点睛】本题考查了二次根式的意义和性质,对于二次根式而言,关键是要注意两个非负性:一是a≥0,二是≥0;在各地试卷中是高频考点.三、解答题(共66分)19、(1);;;(2);(3).【解析】

(1)各式计算得到结果即可;(2)归纳总结得到一般性规律,写出即可;(3)原式各项利用得出的规律变形,计算即可求出值.【详解】解:(1);;;(2);(3)原式=.【点睛】此题考查了二次根式的加减法,以及规律型:数字的变化类,熟练掌握运算法则是解本题的关键.20、(1);(2);(3)线段的中点的运动路径长为.【解析】

(1)如图1中,证明△ABE≌△ECF(AAS),即可解决问题.(2)如图2中,延长DF,BC交于点N,过点F作FM⊥BC于点M.证明△EFM≌△DNC(AAS),设NC=FM=x,利用勾股定理构建方程即可解决问题.(3)如图3中,在BC上截取BM=BA,连接AM,MF,取AM的中点H,连接HQ.由△ABE∽△AMF,推出∠AMF=∠ABE=90°,由AQ=FQ,AH=MH,推出,HQ∥FM,推出∠AHQ=90°,推出点Q的运动轨迹是线段HQ,求出MF的长即可解决问题.【详解】(1)如图1中,四边形是矩形,,,,,,,,.(2)如图2中,延长,交于点,过点作于点.同理可证,设,则,,,,,,,,,即在中,,在中,,在中,,即,解得或(舍弃),即,(3)如图3中,在上截取,连接,,取的中点,连接.,,,,,,,,,,,点的运动轨迹是线段,当点从点运动到点时,,,,线段的中点的运动路径长为.【点睛】本题考查了全等三角形、勾股定理、相似三角形,掌握矩形的性质及全等三角形的性质和判定、利用勾股定理列方程、相似三角形的性质是解题的关键.21、(1)见解析;(2)见解析,点A2,B2,C2的坐标分别为(﹣1,﹣3),(﹣2,﹣5),(﹣4,﹣2);(3)是,对称中心的坐标的坐标为(﹣2,﹣1).【解析】

(1)利用点A和坐标的关系确定平移的方向与距离,关于利用此平移规律写出B1、C1的坐标,然后描点即可;(2)利用关于点对称的点的坐标特征写出A2,B2,C2的坐标,然后描点即可;(3)连接A1A2,B1B2,C1C2,它们都经过点P,从而可判断△A1B1C1与△A2B2C2关于点P中心对称,再写出P点坐标即可.【详解】解:(1)如图,△A1B1C1为所作;(2)如图,△A2B2C2为所作;点A2,B2,C2的坐标分别为(﹣1,﹣3),(﹣2,﹣5),(﹣4,﹣2);(3)△A1B1C1与△A2B2C2关于点P中心对称,如图,对称中心的坐标的坐标为(﹣2,﹣1).【点睛】本题考查作图-旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.22、(1)k=12;(2)DD′=.【解析】

(1)首先延长AD交x轴于点F,由点D坐标可得出OD的长,由菱形的性质,即可得出点A坐标,进而得出k;(2)由(1)可得知反比例函数解析式,由点D的坐标可知点D′的纵坐标,代入函数解析式即可得出点D′的横坐标,即可得解.【详解】(1)延长AD交x轴于点F,如图所示,∵点D的坐标为(4,1),∴OF=4,DF=1.∴OD=2.∴AD=2.∴点A坐标为(4,8).∴k=xy=4×8=12.∴k=12.(2)由平移得点D′的纵坐标为1.由(1)可知函数解析式为,∵点D′在的图象上,∴1=.解得:x=.∴DD′=﹣4=.【点睛】此题主要考查菱形的性质和反比例函数的性质,熟练运用,即可解题.23、(1);(2),且;(3)当时,为等腰直角三角形,此时点坐标为或;当时,为等腰直角三角形,此时点坐标为;当时,为等腰直角三角形,此时点坐标为.【解析】

(1)根据题意联立方程组求解即可.(2)根据题意,当x=t时,求出D、E点的坐标即可,进而表示DE的长度,注意t的取值范围.(3)根据等腰三角形的腰的情况分类讨论即可,第一种情况当时;第二种情况当时,第三种情况当时.逐个计算即可.【详解】解:根据题意可得:解得:所以可得Q点的坐标为;当时,;当时,.点坐标为,点坐标为.在的上方,,且.为等腰直角三角形.或或.若,时,,如图1.解得..点坐标为.若,时,如图2,,解得.点坐标为.若,时,即为斜边,如图3,可得,即.解得.的中点坐标为.点坐标为.若,和时,即,即,(不符合题意,舍去)此时直线不存在.若,时,如图4,即为斜边,可得,即,解得..点坐标为.综上所述:当时,为等

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论