版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
贵州省黔南2024年数学八年级下册期末检测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.当x=2时,函数y=-x2+1的值是()A.-2 B.-1 C.2 D.32.下列平面图形中,是中心对称图形的是()A. B. C. D.3.下列各组数中,不是勾股数的是()A.3,4,5 B.5,12,13 C.6,8,10 D.7,13,184.设,,且,则的值是()A. B. C. D.5.矩形中,,,点为的中点,将矩形右下角沿折叠,使点落在矩形内部点位置,如图所示,则的长度为()A. B. C. D.6.下列从左到右的变形,是因式分解的是()A.2(a﹣b)=2a﹣2b B.C. D.7.如图,边长为1的正方形ABCD绕点A逆时针旋转30°到正方形AB’C’D’,图中阴影部分的面积为().A. B. C. D.8.若一个正多边形的每一个外角都等于40°,则它是().A.正九边形 B.正十边形 C.正十一边形 D.正十二边形9.甲、乙两人各射击6次,甲所中的环数是8,5,5,a,b,c,且甲所中的环数的平均数是6,众数是8;乙所中的环数的平均数是6,方差是4.根据以上数据,对甲,乙射击成绩的正确判断是()A.甲射击成绩比乙稳定 B.乙射击成绩比甲稳定C.甲,乙射击成绩稳定性相同 D.甲、乙射击成绩稳定性无法比较10.若关于x的方程=0有增根,则m的值是A.3 B.2 C.1 D.-111.某机械厂七月份生产零件50万个,第三季度生产零件196万个.设该厂八、九月份平均每月的增长率为x,那么x满足的方程是A.50(1+x2)=196 B.50+50(1+x2)=196C.50+50(1+x)+50(1+x)2=196 D.50+50(1+x)+50(1+2x)=19612.如图是一个直角三角形,它的未知边的长x等于A.13 B. C.5 D.二、填空题(每题4分,共24分)13.如图,已知函数y=ax+b和y=kx的图象交于点P,则根据图象可得,关于的二元一次方程组的解是______.14.如下图,将边长为9cm的正方形纸片ABCD折叠,使得点A落在边CD上的E点,折痕为MN.若CE的长为6cm,则MN的长为_____cm.15.如图,三个边长均为1的正方形按如图所示的方式摆放,A1,A2分别是正方形对角线的交点,则重叠部分的面积和为______.16.分解因式:=______.17.在正方形ABCD中,E是BC边延长线上的一点,且CE=BD,则∠AEC=_____.18.如图,直线与轴、轴分别交于两点,把绕点顺时针旋转后得到,则点的坐标为____.三、解答题(共78分)19.(8分)已知y-2和x成正比例,且当x=1时,当y=4。(1)求y与x之间的函数关系式;(2)若点P(3,m)在这个函数图象上,求m的值。20.(8分)下面的图象反映的过程是:张强从家跑步去体育场,在那里锻炼了一阵后又原路返回,顺路到文具店去买笔,然后散步回家.其中x表示时间,y表示张强离家的距离.根据图象回答:(1)体育场离张强家的多远?张强从家到体育场用了多长时间?(2)体育场离文具店多远?(3)张强在文具店逗留了多久?(4)计算张强从文具店回家的平均速度.21.(8分)如图,中,.(1)用尺规作图作边上的垂直平分线,交于点,交于点(保留作图痕迹,不要求写作法和证明);(2)在(1)的条件下,连接,若则的周长是.(直接写出答案)22.(10分)如图,四边形为菱形,已知,.(1)求点的坐标;(2)求经过点,两点的一次函数的解析式.(3)求菱形的面积.23.(10分)如图,四边形是正方形,是边所在直线上的点,,且交正方形外角的平分线于点.(1)当点在线段中点时(如图①),易证,不需证明;(2)当点在线段上(如图②)或在线段延长线上(如图③)时,(1)中的结论是否仍然成立?请写出你的猜想,并选择图②或图③的一种结论给予证明.24.(10分)如图1在正方形ABCD中,O是AD的中点,点P从A点出发沿A→B→C→D的路线移动到点D时停止,出发时以a单位/秒匀速运动:同时点Q从D出发沿D→C→B→A的路线匀速运动,移动到点A时停止,出发时以b单位/秒运动,两点相遇后点P运动速度变为c单位/秒运动,点Q运动速度变为d单位/秒运动:图2是射线OP随P点运动在正方形ABCD中扫过的图形的面积y1与时间t的函数图象,图3是射线OQ随Q点运动在正方形ABCD中扫过的图形的面积y2与时间(1)正方形ABCD的边长是______.(2)求P,Q相遇后∠POQ在正方形中所夹图形面积S与时间t的函数关系式.25.(12分)如图,在▱ABCD中,E,F是对角线AC上不同两点,,求证:四边形BFDE是平行四边形.26.如图,菱形的对角线、相交于点,,,连接.(1)求证:;(2)探究:当等于多少度时,四边形是正方形?并证明你的结论.
参考答案一、选择题(每题4分,共48分)1、B【解析】
把x=2代入函数关系式进行计算即可得解.【详解】x=2时,y=−×22+1=−1.故选:B.【点睛】本题考查了函数值求解,把自变量的值代入进行计算即可,比较简单.2、B【解析】
根据中心对称图形的概念求解.【详解】解:A、不是中心对称图形,故此选项错误;B、是中心对称图形,故此选项正确;C、不是中心对称图形,故此选项错误;D、不是中心对称图形,故此选项错误.故选B.【点睛】本题考查中心对称图形.3、D【解析】
根据勾股定理的逆定理,验证两小边的平方和是否等于最长边的平方即可得.【详解】A、32+42=52,能构成直角三角形,是正整数,故是勾股数;B、52+122=132,能构成直角三角形,是正整数,故是勾股数;C、62+82=102,能构成直角三角形,是正整数,故是勾股数;D、72+132≠182,不能构成直角三角形,故不是勾股数,故选D.【点睛】本题考查了勾股定理的逆定理,勾股数问题,给三个正整数,看两个较小的数的平方和是否等于最大数的平方,若相等,则这三个数为勾股数,否则就不是.4、C【解析】
将变形后可分解为:(−5)(+3)=0,从而根据a>0,b>0可得出a和b的关系,代入即可得出答案.【详解】由题意得:a+=3+15b,∴(−5)(+3)=0,故可得:=5,a=25b,∴=.故选C.【点睛】本题考查二次根式的化简求值,有一定难度,根据题意得出a和b的关系是关键.5、A【解析】
作EM⊥AF,则AM=FM,利用相似三角形的性质,构建方程求出AM即可解决问题.【详解】解:如图中,作EM⊥AF,则AM=FM,
∵AE=EB=EF,
∴∠EAF=∠EFA,
∵∠CEF=∠CEB,∠BEF=∠EAF+∠EFA,
∴∠BEC=∠EAF,
∴AF∥EC,
在Rt△ECB中,EC=,
∵∠AME=∠B=90°,∠EAM=∠CEB,
∴△CEB∽△EAM,
∴,∴,,
∴AF=2AM=,
故选A.【点睛】本题考查翻折变换、全等三角形的性质、勾股定理、矩形的性质、相似三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考填空题中的压轴题.6、D【解析】
根据因式分解的定义,把一个多项式变形为几个整式的积的形式是分解因式进行分析即可得出.【详解】解:由因式分解的定义可知:A.2(a﹣b)=2a﹣2b,不是因式分解,故错误;B.,不是因式分解,故错误;C.,左右两边不相等,故错误;D.是因式分解;故选:D【点睛】本题考查了因式分解的定义,熟知因式分解的定义和分解的规范要求是解题关键.7、C【解析】
设B′C′与CD的交点为E,连接AE,利用“HL”证明Rt△AB′E和Rt△ADE全等,根据全等三角形对应角相等∠DAE=∠B′AE,再根据旋转角求出∠DAB′=60°,然后求出∠DAE=30°,再解直角三角形求出DE,然后根据阴影部分的面积=正方形ABCD的面积﹣四边形ADEB′的面积,列式计算即可得解.【详解】如图,设B′C′与CD的交点为E,连接AE,在Rt△AB′E和Rt△ADE中,,∴Rt△AB′E≌Rt△ADE(HL),∴∠DAE=∠B′AE,∵旋转角为30°,∴∠DAB′=60°,∴∠DAE=×60°=30°,∴DE=1×=,∴阴影部分的面积=1×1﹣2×(×1×)=1﹣.故选C.【点睛】本题考查了旋转的性质,正方形的性质,全等三角形判定与性质,解直角三角形,利用全等三角形求出∠DAE=∠B′AE,从而求出∠DAE=30°是解题的关键,也是本题的难点.8、A【解析】
根据多边形的外角和是360度即可求得外角的个数,即多边形的边数.【详解】解:∵360÷40=1,
∴这个正多边形的边数是1.
故选:A.【点睛】本题考查了多边形内角与外角,根据外角和的大小与多边形的边数无关,由外角和求正多边形的边数,是常见的题目,需要熟练掌握.9、B【解析】
要判断甲,乙射击成绩的稳定性就是要比较两人成绩的方差的大小,关键是求甲的方差.甲的这组数中的众数是8就说明a,b,c中至少有两个是8,而平均数是6,则可以得到a,b,c三个数其中一个是2,另两个数是8,求得则甲的方差,再进行比较得出结果.【详解】∵这组数中的众数是8,∴a,b,c中至少有两个是8,∵平均数是6,∴a,b,c三个数其中一个是2,∴s甲2=1∵5>4,∴乙射击成绩比甲稳定.故选:B.【点睛】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.10、B【解析】试题分析:若关于x的方程=0有增根,则x=1为增根.把方程去分母可得m-1-x=0,把x=1代入可得m-1-1=0,解得m=2.考点:分式方程点评:本题难度较低,主要考查学生对分式方程知识点的掌握,增根使分式分母为零.11、C【解析】
试题分析:一般增长后的量=增长前的量×(1+增长率),如果该厂八、九月份平均每月的增长率为x,那么可以用x分别表示八、九月份的产量:八、九月份的产量分别为50(1+x)、50(1+x)2,从而根据题意得出方程:50+50(1+x)+50(1+x)2=1.故选C.12、B【解析】
由勾股定理得:22+32=x2.【详解】由勾股定理得:22+32=x2.所以,x=故选:B【点睛】本题考核知识点:勾股定理.解题关键点:熟记勾股定理.二、填空题(每题4分,共24分)13、【解析】
由图可知:两个一次函数的交点坐标为(1,1);那么交点坐标同时满足两个函数的解析式,而所求的方程组正好是由两个函数的解析式所构成,因此两函数的交点坐标即为方程组的解.【详解】解:∵函数y=ax+b和y=kx的图象的交点P的坐标为(1,1),∴关于的二元一次方程组的解是.故答案为.【点睛】本题考查一次函数与二元一次方程组的关系,学生们认真认真分校即可.14、3【解析】
根据图形折叠前后图形不发生大小变化得出∠MWE=∠AWM=90°,进而得出∠DAE=∠DAE,再证明△NFM≌△ADE,然后利用勾股定理的知识求出MN的长.【详解】解:作NF⊥AD,垂足为F,连接AE,NE,∵将正方形纸片ABCD折叠,使得点A落在边CD上的E点,折痕为MN,
∴∠D=∠AHM=90°,∠DAE=∠DAE,
∴△AHM∽△ADE,
∴∠AMN=∠AED,
在△NFM和△ADE中
∵,
∴△NFM≌△ADE(AAS),
∴FM=DE=CD-CE=3cm,
又∵在Rt△MNF中,FN=9cm,
∴根据勾股定理得:MN==3(cm).
故答案为3.【点睛】本题考查了图形的翻折变换,根据图形折叠前后图形不发生大小变化得出三角形的全等是解决问题的关键,难度一般.15、【解析】
过点A1分别作正方形两边的垂线A1D与A1E,根据正方形的性质可得A1D=A1E,再根据同角的余角相等求出∠BA1D=∠CA1E,然后利用“角边角”证明△A1BD和△A1CE全等,根据全等三角形的面积相等求出阴影部分的面积等于正方形面积的,即可求解.【详解】如图,过点A1分别作正方形两边的垂线A1D与A1E,
∵点A1是正方形的中心,
∴A1D=A1E,
∵∠BA1D+∠BA1E=90°,∠CA1E+∠BA1E=90°,
∴∠BA1D=∠CA1E,A1D=A1E,∠A1DB=∠A1EC=90°,
∴△A1BD≌△A1CE(ASA),
∴△A1BD的面积=△A1CE的面积,
∴两个正方形的重合面积=正方形面积=,∴重叠部分的面积和为×2=.故答案是:.【点睛】考查了全等三角形的判定与性质,正方形的性质,作辅助线构造出全等三角形求出阴影部分的面积是正方形的面积的是解题的关键.16、x(x+2)(x﹣2).【解析】试题分析:==x(x+2)(x﹣2).故答案为x(x+2)(x﹣2).考点:提公因式法与公式法的综合运用;因式分解.17、22.5°【解析】
连接AC,由正方形性质可知BD=AC,∠ACB=45°,由CE=BD得AC=CE,所以∠CAE=∠CEA,因为∠ACB=∠CAE+∠AEC=2∠AEC=45°,即可得答案.【详解】如图:连接AC,∵ABCD是正方形∴AC=BD,∠ACB=45°,∵CE=BD∴∠CAE=∠CEA,∵∠ACB=∠CAE+∠AEC=2∠AEC=45°∴∠AEC=22.5°,故答案为:22.5°【点睛】本题考查正方形的性质,熟练掌握相关知识是解题关键.18、(7,3)【解析】
先求出点A、B的坐标得到OA、OB的长度,过点作C⊥x轴于C,再据旋转的性质得到四边形是矩形,求出AC、C即可得到答案.【详解】令中y=0得x=3,令x=0得y=4,∴A(3,0),B(0,4),∴OA=3,OB=4,由旋转得,=OB=4,=OA=3,如图:过点作C⊥x轴于C,则四边形是矩形,∴AC==4,C==3,∠OC=90°,∴OC=OA+AC=3+4=7,∴点的坐标是(7,3)故答案为:(7,3).【点睛】此题考查一次函数与坐标轴的交点坐标,矩形的判定及性质,旋转的性质,利用矩形求对应的线段的长是解题的关键.三、解答题(共78分)19、(1)y=2x+2;(2)m=8【解析】
(1)设y-2=kx,把已知条件代入可求得k,则可求得其函数关系式,可知其函数类型;(2)把点的坐标代入可得到关于m的方程,可求得m的值.【详解】(1)设y-2=kx,把x=1,y=4代入求得k=2,∴函数解析式是y=2x+2;(2)∵点P(3,m)在这个函数图象上,∴m=2×3+2=8.【点睛】本题主要考查待定系数法求函数解析式,掌握待定系数法的应用步骤是解题的关键.20、(1)体育场离张强家2.5km,张强从家到体育场用了15min;(2)体育场离文具店1km;(3)张强在文具店逗留了20min;(4)张强从文具店回家的平均速度为km/min【解析】
(1)根据张强锻炼时时间增加,路程没有增加,表现在函数图象上就出现第一次与x轴平行的图象;(2)由图中可以看出,体育场离张强家2.5千米,文具店离张强家1.5千米,得出体育场离文具店距离即可;(3)张强在文具店逗留,第二次出现时间增加,路程没有增加,时间为:65-1.(4)根据观察函数图象的纵坐标,可得路程,根据观察函数图象的横坐标,可得回家的时间,根据路程与时间的关系,可得答案.【详解】解:(1)从图象上看,体育场离张强家2.5km,张强从家到体育场用了15min.(2)2.5-1.5=1(km),所以体育场离文具店1km.(3)65-1=20(min),所以张强在文具店逗留了20min.(4)1.5÷(100-65)=(km/min),张强从文具店回家的平均速度为km/min.【点睛】此题主要考查了函数图象,正确理解函数图象横纵坐标表示的意义是解答此题的关键,需注意理解时间增多,路程没有变化的函数图象是与x轴平行的一条线段.21、(1)见解析;(2)7.【解析】
(1)利用基本作图作的垂直平分线;(2)根据线段垂线平分线的性质得出,然后利用等线代换得到的周长.【详解】解:(1)如图,为所作:(2)就为边上的垂直平分线,的周长故答案为:.【点睛】本题考查了作图—基本作图:熟练掌握基本作图(做一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).22、(1)C(0,);(2);(3)1【解析】
(1)利用勾股定理求出AB,再利用菱形的性质求出OC的长即可.
(2)求出C,D两点坐标,利用待定系数法即可解决问题.
(3)利用菱形的面积公式计算即可.【详解】解:(1)∵A(3,0),B(0,4),
∴OA=3,OB=4,
∴AB=5,
∵四边形ABCD是菱形,
∴BC=AB=5,
∴OC=1,
∴C(0,-1);(2)由题意,四边形为菱形,C(0,-1),∴D(3,-5),设直线CD的解析式为y=kx+b,,解得:,∴直线CD的解析式为.(3)∵,,∴S菱形ABCD=5×3=1.【点睛】本题考查一次函数的性质,菱形的性质,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.23、(1)见解析;(2)成立,理由见解析.【解析】
(1)图①在AB上取一点M,使AM=EC,连接ME,证明△AME≌△BCF,从而可得到AE=EF;(2)图②在AB上取一点M,使AM=EC,连接ME,证明△AME≌△BCF,从而可得到AE=EF;图③在BA的延长线上取一点N,使AN=CE,连接NE,然后证明△ANE≌△ECF,从而可得到AE=EF.【详解】解:在上取一点,使,连接.∴.∴.∴.∵是外角的平分线,∴.∴.∴.∵,,∴.∴.∴.(2)图②结论:.图③结论:.图②证明:如图②,在上取一点,使,连接.∴.∴.∴.∵是外角的平分线,∴.∴.∴.∵,,∴.∴.∴.图③证明:如图③,在的延长线上取一点,使,连接.∴.∴.∵四边形是正方形,∴.∴.∴.∴.∴.【点睛】本题主要考查的是全等三角形的性质和判定、正方形的性质的应用等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.24、(1)6;(2)见详解.【解析】
(1)从图3中可以看出射线OQ前面6秒扫过的面积为9,则可以得到12×12AD∙AD=9(2)仔细观察函数图象可知点P点Q是在点C处相遇,并由(1)中得到的正方形边长可求得,相遇前后P,Q的速度,再画出图形列出式子求解即可.【详解】解:(1)由图3可知△OCD的面积=9.∵O是AD的中点,∴OD=12∵四边形ABCD是正方形,∴AD=CD,∠ODC=90°,∴12AD∙1解得:AD=6.故答案为6.(2)观察图2和图3可知P,Q两点是在点C处相遇,且相遇前P,Q的速度分别为2和1.相遇后P,Q的运动速度分别为1和3.①当6≤t<8时,如图1,S=正方形的面积-△POD的面积-梯形OABQ的面积.∵PC=t-6,CQ=3(t-6)=3t-18.∴PD=12-t,BQ=24-3t.∴S=36-32=36-18+32=212②当8≤t≤10时,如图2,S=正方形的面积-△POD的面积-△AO
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 西师版小学四年级下册数学教案
- 结肠癌胆道引流护理
- 2024年度旅游业务与咨询服务合同2篇
- 玉林师范学院《控制工程基础》2022-2023学年第一学期期末试卷
- 玉林师范学院《公共体育跆拳道》2021-2022学年第一学期期末试卷
- 玉林师范学院《单片机应用实验》2022-2023学年第一学期期末试卷
- 二零二四年度三棵树外墙涂料供货质量合同3篇
- 股骨骨折手术护理查房
- 2024年度版权授权使用合同标的:音乐作品
- 脑血管后遗症治疗
- 腹直肌分离康复(产后康复课件PPT)
- optimact540技术参考手册
- 中小学生冬季交通安全教育PPT模板
- 丙型肝炎病毒课件
- 2023届高三语文复习:山水田园类诗歌阅读专项练习
- (新版)血液透析专科理论考试题库(参考500题)
- 四川省巴中市各县区乡镇行政村村庄村名居民村民委员会明细
- 茶叶产业发展情况的调研报告
- 建筑节能分部工程专项验收方案
- 初二上学期期中家长会课件-
- 浙江省土地整治专项项目耕地质量等别评定外业调查重点技术标准手册
评论
0/150
提交评论