浙江省温州市鹿城区第二十三中学2024届八年级下册数学期末综合测试试题含解析_第1页
浙江省温州市鹿城区第二十三中学2024届八年级下册数学期末综合测试试题含解析_第2页
浙江省温州市鹿城区第二十三中学2024届八年级下册数学期末综合测试试题含解析_第3页
浙江省温州市鹿城区第二十三中学2024届八年级下册数学期末综合测试试题含解析_第4页
浙江省温州市鹿城区第二十三中学2024届八年级下册数学期末综合测试试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

浙江省温州市鹿城区第二十三中学2024届八年级下册数学期末综合测试试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.正方形的边长为,在其的对角线上取一点,使得,以为边作正方形,如图所示,若以为原点建立平面直角坐标系,点在轴正半轴上,点在轴的正半轴上,则点的坐标为()A. B. C. D.2.方程3x2﹣7x﹣2=0的根的情况是()A.方程没有实数根B.方程有两个不相等的实数根C.方程有两个相等的实数很D.不确定3.若Rt△ABC中两条边的长分别为a=3,b=4,则第三边c的长为()A.5 B. C.或 D.5或4.顺次连接四边形各边的中点,所成的四边形必定是()A.等腰梯形 B.直角梯形 C.矩形 D.平行四边形5.如图,在平面直角坐标系xOy中,A(0,2),B(0,6),动点C在直线y=x上.若以A、B、C三点为顶点的三角形是等腰三角形,则点C的个数是()A.6 B.5 C.4 D.36.下列各等式正确的是()A. B.C. D.7.如图,表示A点的位置,正确的是()A.距O点3km的地方B.在O点的东北方向上C.在O点东偏北40°的方向D.在O点北偏东50°方向,距O点3km的地方8.菱形ABCD的周长是20,对角线AC=8,则菱形ABCD的面积是()A.12 B.24 C.40 D.489.如图,在Rt△ABC中,∠ACB=90°,∠ABC=30°,将△ABC绕点C顺时针旋转至△A′B′C,使得点A′恰好落在AB上,则旋转角度为()A.30° B.60° C.90° D.150°10.下列变形中,正确的是()A. B.C. D.二、填空题(每小题3分,共24分)11.若分式方程无解,则等于___________12.已知m是一元二次方程的一个根,则代数式的值是_____13.如图,在坐标系中,有,且A(﹣1,3),B(﹣3,﹣1),C(﹣3,3),已知是由旋转得到的.请写出旋转中心的坐标是____,旋转角是____度.14.若正数a是一元二次方程x2﹣5x+m=0的一个根,﹣a是一元二次方程x2+5x﹣m=0的一个根,则a的值是______.15.数据、、、、的方差是____.16.如图,在矩形中,点为的中点,点为上一点,沿折叠,点恰好与点重合,则的值为______.17.在正方形ABCD中,对角线AC、BD相交于点O.如果AC=,那么正方形ABCD的面积是__________.18.若分式在实数范围内有意义,则的取值范围是_____.三、解答题(共66分)19.(10分)解不等式3(x﹣1)≥5(x﹣3)+6,并求出它的正整数解.20.(6分)已知四边形ABCD是正方形,点E是边BC上的任意一点,AE⊥EF,且直线EF交正方形外角的平分线CF于点F.(1)如图1,求证:AE=EF;(2)如图2,当AB=2,点E是边BC的中点时,请直接写出FC的长.21.(6分)蚌埠“一带一路”国际龙舟邀请赛期间,小青所在学校组织了一次“龙舟”故事知多少比赛,小青从全体学生中随机抽取部分同学的分数(得分取正整数,满分为100分)进行统计.以下是根据抽取同学的分数制作的不完整的频率分布表和频率分布直方图,请根据图表,回答下列问题::组别分组频数频率190.1823210.4240.0652(1)根据上表填空:__,=.,=.(2)若小青的测试成绩是抽取的同学成绩的中位数,那么小青的测试成绩在什么范围内?(3)若规定:得分在的为“优秀”,若小青所在学校共有600名学生,从本次比赛选取得分为“优秀”的学生参加决赛,请问共有多少名学生被选拔参加决赛?22.(8分)如图,在平行四边形中,对角线、相交于点,是延长线上的点,且为等边三角形.(1)四边形是菱形吗?请说明理由;(2)若,试说明:四边形是正方形.23.(8分)如图,在矩形ABCD中,对角线AC、BD相交于点O.若∠AOD=120°,AB=3,求AC的长.24.(8分)(1)化简:;(2)解方程:;(3)用配方法解方程:x2-8x=84;(4)用公式法解方程:2x2+3x-1=025.(10分)如图,在平面直角坐标系中,有一,且,,,已知是由绕某点顺时针旋转得到的.(1)请写出旋转中心的坐标是,旋转角是度;(2)以(1)中的旋转中心为中心,分别画出顺时针旋转90°、180°的三角形;(3)设两直角边、、斜边,利用变换前后所形成的图案验证勾股定理.26.(10分)绿谷商场“家电下乡”指定型号冰箱、彩电的进价和售价如下表所示:(1)按国家政策,农民购买“家电下乡”产品可享受售价13%的政府补贴.农民田大伯到该商场购买了冰箱、彩电各一台,可以享受多少元的政府补贴?(2)为满足农民需求,商场决定用不超过85000元采购冰箱、彩电共40台,且冰箱的数量不少于彩电数量的.①请你帮助该商场设计相应的进货方案;②哪种进货方案商场获得利润最大(利润=售价-进价),最大利润是多少?

参考答案一、选择题(每小题3分,共30分)1、D【解析】

作辅助线,根据正方形对角线平分内角的性质可证明△AGH是等腰直角三角形,计算GH和BH的长,可解答.【详解】解:过G作GH⊥x轴于H,

∵四边形ABCD是正方形,

∴∠BAC=45°,

∵四边形AEFG是正方形,AE=AB=2,

∴∠EAG=90°,AG=2,

∴∠HAG=45°,∵∠AHG=90°,

∴AH=GH=,

∴G(,2+),

故选:D.【点睛】本题考查了正方形的性质,等腰直角三角形的性质和判定等知识,掌握等腰直角三角形各边的关系是关键,理解坐标与图形性质.2、B【解析】

先求一元二次方程的判别式的值,由△与0的大小关系来判断方程根的情况即可求解.【详解】由根的判别式△=b2﹣4ac=(﹣7)2﹣4×3×(﹣2)=49+24=73>0,所以方程有两个不相等的实数根.故选B.【点睛】本题考查了一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.3、D【解析】

分情况讨论:①当a,b为直角边时,求得斜边c的长度;②当a为直角边,b为斜边时,求得另外一条直角边c的长度.【详解】解:分两种情况:

①当a,b为直角边时,第三边c==5;

②当a为直角边,b为斜边时,第三边c=.

故选D.【点睛】本题考查了勾股定理在直角三角形中的运用,本题中讨论边长为4的边是直角边还是斜边是解题的关键.4、D【解析】

根据题意,画出图形,连接AC、BD,根据一组对边平行且相等的四边形是平行四边形进行判定.【详解】解:四边形ABCD的各边中点依次为E、F、H、G,∴EF为△ABD的中位线,GH为△BCD的中位线,∴EF∥BD,且EF=BD,GH∥BD,且GH=BD,∴EF∥GH,EF=GH,∴四边形EFHG是平行四边形.故选:D.【点睛】此题考查平行四边形的判定和三角形中位线定理.解题的关键是正确画出图形,注意利用图形求解.5、D【解析】

根据线段垂直平分线上的点到线段两端点的距离相等可得AB的垂直平分线与直线y=x的交点为点C1,即可求得C的坐标,再求出AB的长,以点A为圆心,以AB的长为半径画弧,与直线y=x的交点为C2,C3,过点B作BD⊥直线y=x,垂足为D,则△OBD是等腰直角三角形,根据勾股定理求出点B到直线y=x的距离为,由>4,可知以点B为圆心,以AB的长为半径画弧,与直线y=x没有交点,据此即可求得答案.【详解】如图,AB的垂直平分线与直线y=x相交于点C1,∵A(0,2),B(0,6),∴AB=6﹣2=4,以点A为圆心,以AB的长为半径画弧,与直线y=x的交点为C2,C3,过点B作BD⊥直线y=x,垂足为D,则△OBD是等腰直角三角形,∴BD=OD,∵OB=6,BD2+OD2=OB2,∴BD=,即点B到直线y=x的距离为,∵>4,∴以点B为圆心,以AB的长为半径画弧,与直线y=x没有交点,综上所述,点C的个数是1+2=3,故选D.【点睛】本题考查了等腰三角形的判定,坐标与图形性质,勾股定理的应用,作出图形,利用数形结合的思想求解更形象直观.6、B【解析】

解:选项A.,错误;选项B.,正确;选项C.,错误;选项D.,错误.故选B.【点睛】本题考查;;;;;;灵活应用上述公式的逆用是解题关键.7、D【解析】

用方向角和距离表示位置.【详解】如图,可用方向角和距离表示:A在O点北偏东50°方向,距O点3km的地方.故选D【点睛】本题考核知识点:用方向角和距离表示位置.解题关键点:理解用方向角和距离表示位置的方法.8、B【解析】解:∵菱形ABCD的周长是20,∴AB=20÷4=5,AC⊥BD,OA=AC=4,∴OB==3,∴BD=2OB=6,∴菱形ABCD的面积是:AC•BD=×8×6=1.故选B.点睛:此题考查了菱形的性质以及勾股定理.解题的关键是熟练运用勾股定理以及菱形的各种性质.9、B【解析】

根据直角三角形两锐角互余求出∠A=60°,根据旋转的性质可得AC=A′C,然后判断出△A′AC是等边三角形,根据等边三角形的性质求出∠ACA′=60°,然后根据旋转角的定义解答即可.【详解】∵∠ACB=90°,∠ABC=30°,∴∠A=90°-30°=60°,∵△ABC绕点C顺时针旋转至△A′B′C时点A′恰好落在AB上,∴AC=A′C,∴△A′AC是等边三角形,∴∠ACA′=60°,∴旋转角为60°.故选:B.【点睛】本题考查了旋转的性质,直角三角形两锐角互余,等边三角形的判定与性质,熟记各性质并准确识图是解题的关键.10、D【解析】

根据分式的基本性质:分式的分子、分母同时乘以或除以同一个非0的数或式子,分式的值不变.逐一进行判断。【详解】解:A.是最简分式,不能约分,故本选项错误;B.,故本选项错误;C.,故本选项错误;D.,故本选项正确。故选:D【点睛】本题主要考查了分式的性质,熟练掌握运算法则是解本题的关键.二、填空题(每小题3分,共24分)11、【解析】

先去分母,把分式方程的增根代入去分母后的整式方程即可得到答案.【详解】解:,去分母得:,所以:,因为:方程的增根是,所以:此时,故答案为:.【点睛】本题考查分式方程无解时字母系数的取值,掌握把增根代入去分母后的整式方程是解题关键.12、.【解析】

把代入方程,得出关于的一元二次方程,再整体代入.【详解】当时,方程为,即,所以,.故答案为:.【点睛】本题考查的是一元二次方程解的定义.能使方程成立的未知数的值,就是方程的解,同时,考查了整体代入的思想.13、1【解析】

先根据平面直角坐标系得出点的坐标,从而可得的垂直平分线,再利用待定系数法分别求出直线的解析式,从而可得其垂直平分线的解析式,联立两条垂直平分线即可求出旋转中心的坐标,然后根据旋转中心可得出旋转角为,最后利用勾股定理的逆定理即可得求出旋转角的度数.【详解】由图可知,点的坐标为,点的坐标为点关于y轴对称y轴垂直平分,即线段的垂直平分线所在直线的解析式为设直线的解析式为将点代入得:,解得则直线的解析式为设垂直平分线所在直线的解析式为的中点坐标为,即将点代入得:,解得则垂直平分线所在直线的解析式为联立,解得则旋转中心的坐标是由此可知,旋转角为是等腰直角三角形,且故答案为:,1.【点睛】本题考查了利用待定系数法求一次函数的解析式、旋转的定义、勾股定理的逆定理等知识点,掌握确定旋转中心的方法是解题关键.14、1【解析】试题解析:∵a是一元二次方程x2-1x+m=0的一个根,-a是一元二次方程x2+1x-m=0的一个根,∴a2-1a+m=0①,a2-1a-m=0②,①+②,得2(a2-1a)=0,∵a>0,∴a=1.考点:一元二次方程的解.15、【解析】分析:先求平均数,根据方差公式求解即可.详解:数据1,2,3,3,6的平均数∴数据1,2,3,3,6的方差:故答案为:点睛:考查方差的计算,记忆方差公式是解题的关键.16、【解析】【分析】由矩形性质可得AB=CD,BC=AD;由对折得AB=BE,设AB=x,根据勾股定理求出BC关于x的表达式,便可得到.【详解】设AB=x,在矩形ABCD中,AB=CD=x,BC=AD;因为,E为CD的中点,所以,CE=,由对折可知BE=AB=x.在直角三角形BCE中BC=,所以,.故答案为图(略),【点睛】本题考核知识点:矩形性质,轴对称.解题关键点:利用轴对称性质得到相等线段,利用勾股定理得到BE和BC的关系.17、1【解析】

根据正方形的对角线将正方形分为两个全等的等腰直角三角形,AC是该三角形的斜边,由此根据三角形面积的计算公式得到正方形的面积.【详解】正方形ABCD的一条对角线将正方形分为两个全等的等腰直角三角形,即AC是等腰直角三角形的斜边,∵AC=∴正方形ABCD的面积两个直角三角形的面积和,∴正方形ABCD的面积=,故答案为:1.【点睛】此题考查正方形的性质,等腰直角三角形的性质,正确掌握正方形的性质是解题的关键.18、x≠1【解析】【分析】根据分式有意义的条件进行求解即可得答案.【详解】由题意得:1-x≠0,解得:x≠1,故答案为x≠1.【点睛】本题考查了分式有意义的条件,熟知分母不为0时分式有意义是解题的关键.三、解答题(共66分)19、它的正整数解为:1,2,1.【解析】

首先利用不等式的基本性质解不等式,再从不等式的解集中找出适合条件的正整数解即可.【详解】1(x﹣1)≥5(x﹣1)+61x﹣1≥5x﹣15+6,1x﹣5x≥﹣15+6+1,﹣2x≥﹣6,∴x≤1所以它的正整数解为:1,2,1.【点睛】此题考查一元一次不等式的整数解,解题关键在于掌握运算法则20、(1)证明见解析;(2).【解析】

(1)截取BE=BM,连接EM,求出AM=EC,得出∠BME=45°,求出∠AME=∠ECF=135°,求出∠MAE=∠FEC,根据ASA推出△AME和△ECF全等即可;(2)取AB中点M,连接EM,求出BM=BE,得出∠BME=45°,求出∠AME=∠ECF=135°,求出∠MAE=∠FEC,根据ASA推出△AME和△ECF全等即可.【详解】(1)证明:如图1,在AB上截取BM=BE,连接ME,∵∠B=90°,∴∠BME=∠BEM=45°,∴∠AME=135°∵CF是正方形的∠C外角的平分线,∴∠ECF=90°+45°=135°∴∠AME=∠ECF,∵AB=BC,BM=BE,∴AM=EC,∵AE⊥EF,∴∠AEF=90°,∴∠AEB+∠CEF=90°,∵∠BAE+∠AEB=90°,∴∠BAE=∠CEF,在△AME和△ECF中,∴△AME≌△ECF(ASA),∴AE=EF;(2)解:取AB中点M,连接EM,∵AB=BC,E为BC中点,M为AB中点,∴AM=CE=BE,∴∠BME=∠BME=45°,∴∠AME=135°=∠ECF,∵∠B=90°,∴∠BAE+∠AEB=90°,∵∠AEF=90°,∴∠AEB+∠FEC=90°,∴∠BAE=∠FEC,在△AME和△ECF中,∴△AME≌△ECF(ASA),∴EM=CF,∵AB=2,点E是边BC的中点,∴BM=BE=1,∴CF=ME=.【点睛】本题考查了正方形的性质,全等三角形的性质和判定,角平分线的定义,关键是推出△AME≌△ECF.21、(1);(2);(1)24.【解析】

(1)根据频数、频率、总数之间的关系一一解决问题即可;(2)根据中位数的定义即可判断;(1)用样本估计总体的思想解决问题即可.【详解】解:(1)9÷0.18=50(人).a=50×0.06=1,m=50﹣(9+21+1+2)=15,b=15÷50=0.1.故答案为:1,0.1,15;(2)共有50名学生,中位数是第25、26个数据的平均数,第25、26个数据在第1组,所以小青的测试成绩在70≤x<80范围内;(1)×600=24(人).答:共有24名学生被选拔参加决赛.【点睛】本题考查频数分布直方图、样本估计总体的思想、频数分布表、中位数的定义等知识,解题的关键是熟练掌握基本知识,所以中考常考题型.22、(1)四边形为菱形,理由见解析;(2)见解析【解析】

(1)根据“对角线互相垂直的平行四边形是菱形”即可求证.(2)根据“有一个角是90°的菱形是正方形”即可求证.【详解】(1)四边形为菱形,理由:在平行四边形中,,是等边三角形.,又、、、四点在一条直线上,.平行四边形是菱形.(对角线互相垂直的平行四边形是菱形)(2)由是等边三角形,,得到,,..,四边形是菱形,,,四边形是正方形.(有一个角是90°的菱形是正方形)【点睛】本题考查了平行四边形的性质以及菱形、正方形的判定定理,熟练掌握相关性质定理是解答本题的关键.23、1【解析】

依据矩形的性质可知△AOB是等边三角形,所以AO=AB=3,则AC=2AO=1.【详解】解:∵在矩形ABCD中,

∴AO=BO=CO=DO.

∵∠AOD=120°,

∴∠AOB=10°.

∴△AOB是等边三角形.

∴AO=AB=3,

∴AC=2AO=1.【点睛】本题主要考查了矩形的性质,矩形中对角线相等且互相平分,则其分成的四条线段都相等.24、(1)(2)x=30;(3);(4)【解析】

(1)根据分式的运算法则即可求出答案.(2)根据分式方程的解法即可求出答案.(3)根据配方法即可求出答案.(4)根据公式法即可求出答案.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论