版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江苏省盐城市名校2024年八年级数学第二学期期末调研模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.如图,将△ABC绕点C顺时针旋转90°得到△EDC.若点A,D,E在同一条直线上,∠ACB=20°,则∠ADC的度数是A.55° B.60° C.65° D.70°2.如图,平行四边形ABCD的周长是32cm,△ABC的周长是26cm,E、F分别是边AB、BC的中点,则EF的长为()A.8cm B.6cm C.5cm D.4cm3.如图,在△ABC中,AB=4,BC=8,AC=6,D、E分别是BC、CA的中点,则△DEC的周长为()A.18 B.8 C.10 D.94.一次函数y=3x+m-2的图象不经过第二象限,则m的取值范围是()A.m≤2B.m≤-2C.m>2D.m<25.在同一直角坐标系中,将一次函数y=x﹣3(x>1)的图象,在直线x=2(横坐标为2的所有点构成该直线)的左侧部分沿直线x=2翻折,图象的其余部分保持不变,得到一个新图象.若关于x的函数y=2x+b的图象与此图象有两个公共点,则b的取值范围是()A.8>b>5 B.﹣8<b<﹣5 C.﹣8≤b≤﹣5 D.﹣8<b≤﹣56.化简:的结果是()A. B. C.﹣ D.﹣7.如图,在平行四边形ABCD中,下列结论中错误的是()A.∠1=∠2 B.∠BAD=∠BCD C.AO=CO D.AC⊥BD8.如图,将等腰直角三角形ABC绕点A逆时针旋转15度得到ΔAEF,若AC=,则阴影部分的面积为(
)A.1 B. C. D.9.若一组数据3、4、5、x、6、7的平均数是5,则x的值是()A.4 B.5 C.6 D.710.如图,过平行四边形ABCD对角线交点O的直线交AD于E,交BC于F,若AB=5,BC=6,OE=2,那么四边形EFCD周长是()A.16 B.15 C.14 D.1311.一个不透明的盒子中装有2个红球和1个白球,它们除颜色外都相同.若从中任意摸出一个球,则下列叙述正确的是()A.摸到红球是必然事件B.摸到白球是不可能事件C.摸到红球与摸到白球的可能性相等D.摸到红球比摸到白球的可能性大12.如果直线y=kx+b经过一、三、四象限,那么直线y=bx+k经过第()象限A.一、二、三 B.一、二、四 C.一、三、四 D.二、三、四二、填空题(每题4分,共24分)13.如图,△ABC中,AB=AC=5,BC=6,M为BC的中点,MN⊥AC于N点,则MN=(________).14.一次函数y=kx+3的图象过点A(1,4),则这个一次函数的解析式_____.15.如图,在矩形纸片ABCD中,AB=6,BC=10,点E在CD上,将△BCE沿BE折叠,点C恰落在边AD上的点F处,点G在AF上,将△ABG沿BG折叠,点A恰落在线段BF上的点H处,有下列结论:①∠EBG=45°;②S△ABG=S△FGH;③△DEF∽△ABG;④AG+DF=FG.其中正确的是_____.(把所有正确结论的序号都选上)16.在Rt△ABC中,∠ACB=90°,D为AB上的中点,若CD=5cm,则AB=_____________cm.17.如图,已知平行四边形,,是边的中点,是边上一动点,将线段绕点逆时针旋转至,连接,,,,则的最小值是____.18.如图,在平面直角坐标系中,矩形的边一条动直线分别与将于点,且将矩形分为面积相等的两部分,则点到动直线的距离的最大值为__________.三、解答题(共78分)19.(8分)已知:矩形ABCD中,AB=10,AD=8,点E是BC边上一个动点,将△ABE沿AE折叠得到△AB′E。(1)如图(1),点G和点H分别是AD和AB′的中点,若点B′在边DC上。①求GH的长;②求证:△AGH≌△B′CE;(2)如图(2),若点F是AE的中点,连接B′F,B′F∥AD,交DC于I。①求证:四边形BEB′F是菱形;②求B′F的长。20.(8分)先化简,再求值:÷(1+),其中x=1.21.(8分)某住宅小区有一块草坪如图所示.已知AB=3米,BC=4米,CD=12米,DA=13米,且AB⊥BC,求这块草坪的面积.22.(10分)如图,在△ABC中,CF⊥AB于点F,BE⊥AC于点E,M为BC的中点连接ME、MF、EF.(1)求证:△MEF是等腰三角形;(2)若∠A=,∠ABC=50°,求∠EMF的度数.23.(10分)如图,在矩形ABCD中,AC=60cm,∠BAC=60°,点E从点A出发沿AB方向以2cm/秒的速度向点B匀速运动,同时点F从点C出发沿CA方向以4cm/秒的速度向点A匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点E,F运动的时间是t秒(0<t≤15).过点F作OF⊥BC于点O,连接OE,EF.(1)求证:AE=OF;(2)四边形AEOF能够成为菱形吗?如果能,求出相应的t值,如果不能,请说明理由;(3)当t为何值时,△OEF为直角三角形?请说明理由.24.(10分)定义:任意两个数,,按规则得到一个新数,称所得的新数为数,的“传承数.”(1)若,,求,的“传承数”;(2)若,,且,求,的“传承数”;(3)若,,且,的“传承数”值为一个整数,则整数的值是多少?25.(12分)甲、乙两位同学同时从学校出发,骑自行车前往距离学校20千米的郊野公园。已知甲同学比乙同学平均每小时多骑行2千米,甲同学在路上因事耽搁了30分钟,结果两人同时到达公园。问:甲、乙两位同学平均每小时各骑行多少千米?26.先化简,然后从的范围内选取一个合适的整数作为的值代入求值.
参考答案一、选择题(每题4分,共48分)1、C【解析】
根据旋转的性质和三角形内角和解答即可.【详解】∵将△ABC绕点C顺时针旋转90°得到△EDC.∴∠DCE=∠ACB=20°,∠BCD=∠ACE=90°,AC=CE,∴∠ACD=90°-20°=70°,∵点A,D,E在同一条直线上,∴∠ADC+∠EDC=180°,∵∠EDC+∠E+∠DCE=180°,∴∠ADC=∠E+20°,∵∠ACE=90°,AC=CE∴∠DAC+∠E=90°,∠E=∠DAC=45°在△ADC中,∠ADC+∠DAC+∠DCA=180°,即45°+70°+∠ADC=180°,解得:∠ADC=65°,故选C.【点睛】此题考查旋转的性质,关键是根据旋转的性质和三角形内角和解答.2、C【解析】
根据平行四边形的性质得出AB+BC=16cm,进而得出AC的长度,利用三角形中位线解答即可.【详解】解:∵平行四边形ABCD的周长是32cm,∴AB+BC=16cm,∵△ABC的周长是26cm,∴AC=26-16=10cm,∵E、F分别是边AB、BC的中点,∴EF=0.5AC=5cm,故选:C.【点睛】此题考查平行四边形的性质,关键是根据平行四边形的性质得出AB+BC=16cm,进而得出AC的长度.3、D【解析】
根据三角形中位线的性质可得出DE,CD,EC的长度,则△DEC的周长可求.【详解】∵D、E分别是BC、CA的中点,∴DE是△ABC的中位线.∵AB=4,BC=8,AC=6,∴DE=AB=2,EC=AC=3,CD=CB=4,∴△DEC的周长=2+3+4=9,故选:D.【点睛】本题主要考查三角形中位线,掌握三角形中位线的性质是解题的关键.4、A【解析】一次函数y=3x+m-2的图象不经过第二象限,可得m-2≤0,解得m≤2,故选A.5、B【解析】
根据直线y=2x+b经过(2,﹣1),可得b=﹣1;根据直线y=2x+b经过(3,﹣2),即可得到b=﹣8,依据关于x的函数y=2x+b的图象与此图象有两个公共点,即可得出b的取值范围是﹣8<b<﹣1.【详解】解:在y=x﹣3(x>1)中,令x=2,则y=﹣1,若直线y=2x+b经过(2,﹣1),则﹣1=4+b,解得b=﹣1;在y=x﹣3(x>1)中,令x=1,则y=﹣2,点(1,﹣2)关于x=2对称的点为(3,﹣2),若直线y=2x+b经过(3,﹣2),则﹣2=6+b,解得b=﹣8,∵关于x的函数y=2x+b的图象与此图象有两个公共点,∴b的取值范围是﹣8<b<﹣1,故选:B.【点睛】本题主要考查了一次函数图象与几何变换,解决问题给的关键是掌握一次函数图象上点的坐标特征:直线上任意一点的坐标都满足函数关系式y=kx+b.6、D【解析】
根据二次根式的性质由题意可知,我们在变形时要注意原式的结果应该是个负数,然后根据二次根式的性质化简而得出结果.【详解】解:原式故选:.【点睛】本题考查了二次根式的性质与二次根式的化简,关键要把握住二次根式成立的条件.7、D【解析】
根据平行四边形的对边平行和平行线的性质可对A进行判断;根据平行四边形的对角相等可对B进行判断;根据平行四边形的对边相等可对A进行判断;根据平行四边形的对角线互相平分可对D进行判断.【详解】A、在▱ABCD中,∵AB∥CD,∴∠1=∠2,所以A选项结论正确;B、在▱ABCD中,∠BAD=∠BCD,所以B选项结论正确;C、在▱ABCD中,AO=CO,所以C选项的结论正确;D、在▱ABCD中,OA=OC,OB=OD,所以D选项结论错误.故选D.【点睛】本题考查了平行四边形的性质:平行四边形的对边相等;平行四边形的对角相等;平行四边形的对角线互相平分.8、C【解析】
利用旋转得出∠DAF=30°,就可以利用直角三角形性质,求出阴影部分面积.【详解】解:如图.设旋转后,EF交AB与点D,因为等腰直角三角形ABC中,∠BAC=90°,又因为旋转角为15°,所以∠DAF=30°,因为AF=AC=,所以DF=1,所以阴影部分的面积为.故选:C.9、B【解析】分析:根据平均数的定义计算即可;详解:由题意(3+4+5+x+6+7)=5,解得x=5,故选B.点睛:本题考查平均数的定义,解题的关键是根据平均数的定义构建方程解决问题10、B【解析】
根据平行四边形性质得出AD=BC=6,AB=CD=5,OA=OC,AD∥BC,推出∠EAO=∠FCO,证△AEO≌△CFO,推出AE=CF,OE=OF=2,求出DE+CF=DE+AE=AD=6,即可求出答案.【详解】解:∵四边形ABCD是平行四边形,
∴AD=BC=6,AB=CD=5,OA=OC,AD∥BC,
∴∠EAO=∠FCO,
在△AEO和△CFO中,,
∴△AEO≌△CFO(ASA),
∴AE=CF,OE=OF=2,
∴DE+CF=DE+AE=AD=6,
∴四边形EFCD的周长是EF+FC+CD+DE=2+2+6+5=1.
故选B.【点睛】本题考查平行四边形性质,全等三角形的性质和判定的应用,解题的关键是求出DE+CF的长和求出OF长.11、D【解析】
A.摸到红球是随机事件,故此选项错误;B.摸到白球是随机事件,故此选项错误;C.摸到红球比摸到白球的可能性相等,根据不透明的盒子中装有2个红球和1个白球,得出摸到红球比摸到白球的可能性大,故此选项错误;D.根据不透明的盒子中装有2个红球和1个白球,得出摸到红球比摸到白球的可能性大,故此选项正确;故选D.12、B【解析】
根据图象在坐标平面内的位置关系确定k,b的取值范围,从而求解.【详解】解:已知直线y=kx+b经过第一、三、四象限,则得到k>0,b<0,那么直线y=bx+k经过第一、二、四象限,故选:B.【点睛】本题主要考查一次函数图象在坐标平面内的位置与k、b的关系.解答本题注意理解:直线y=kx+b所在的位置与k、b的符号有直接的关系.k>0时,直线必经过一、三象限;k<0时,直线必经过二、四象限;b>0时,直线与y轴正半轴相交;b=0时,直线过原点;b<0时,直线与y轴负半轴相交.二、填空题(每题4分,共24分)13、【解析】
连接AM,根据等腰三角形三线合一的性质得到AM⊥BC,根据勾股定理求得AM的长,再根据在直角三角形的面积公式即可求得MN的长.【详解】解:连接AM,∵AB=AC,点M为BC中点,∴AM⊥CM(三线合一),BM=CM,∵AB=AC=5,BC=6,∴BM=CM=3,在Rt△ABM中,AB=5,BM=3,∴根据勾股定理得:,又,∴.【点睛】综合运用等腰三角形的三线合一,勾股定理.特别注意结论:直角三角形斜边上的高等于两条直角边的乘积除以斜边.14、y=x+3【解析】因为一次函数y=kx+3的图象过点A(1,4),所以k+3=4,解得,k=1,所以,该一次函数的解析式是:y=x+3,故答案是:y=x+3【点睛】运用了待定系数法求一次函数解析式,一次函数图象上点的坐标特征.直线上任意一点的坐标都满足函数关系式y=kx+b(k≠0).15、①②④.【解析】
利用折叠性质得∠CBE=∠FBE,∠ABG=∠FBG,BF=BC=10,BH=BA=6,AG=GH,则可得到∠EBG=∠ABC,于是可对①进行判断;在Rt△ABF中利用勾股定理计算出AF=8,则DF=AD-AF=2,设AG=x,则GH=x,GF=8-x,HF=BF-BH=4,利用勾股定理得到x2+42=(8-x)2,解得x=3,所以AG=3,GF=5,于是可对②④进行判断;接着证明△ABF∽△DFE,利用相似比得到,而,所以,所以△DEF与△ABG不相似,于是可对③进行判断.【详解】解:∵△BCE沿BE折叠,点C恰落在边AD上的点F处;点G在AF上,将△ABG沿BG折叠,点A恰落在线段BF上的点H处,∴∠CBE=∠FBE,∠ABG=∠FBG,BF=BC=10,BH=BA=6,AG=GH,∴∠EBG=∠EBF+∠FBG=∠CBF+∠ABF=∠ABC=45°,所以①正确;在Rt△ABF中,AF===8,∴DF=AD﹣AF=10﹣8=2,设AG=x,则GH=x,GF=8﹣x,HF=BF﹣BH=10﹣6=4,在Rt△GFH中,∵GH2+HF2=GF2,∴x2+42=(8﹣x)2,解得x=3,∴GF=5,∴AG+DF=FG=5,所以④正确;∵△BCE沿BE折叠,点C恰落在边AD上的点F处,∴∠BFE=∠C=90°,∴∠EFD+∠AFB=90°,而∠AFB+∠ABF=90°,∴∠ABF=∠EFD,∴△ABF∽△DFE,∴=,∴===,而==2,∴≠,∴△DEF与△ABG不相似;所以③错误.∵S△ABG=×6×3=9,S△GHF=×3×4=6,∴S△ABG=S△FGH,所以②正确.故答案是:①②④.【点睛】本题考查了三角形相似的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用;在利用相似三角形的性质时,主要利用相似比计算线段的长.也考查了折叠和矩形的性质.16、1【解析】
根据直角三角形斜边上的中线等于斜边的一半解答.【详解】∵在Rt△ABC中,∠ACB=90°,D是AB的中点,∴线段CD是斜边AB上的中线;又∵CD=5cm,∴AB=2CD=1cm.故答案是:1.【点睛】本题考查了直角三角形斜边上的中线.直角三角形斜边上的中线等于斜边的一半.17、【解析】
如图,作交于,连接、、作于,首先证明,因为,即可推出当、、共线时,的值最小,最小值.【详解】如图,作交于,连接、、作于.是等腰直角三角形,,,,,,,,,,,,,,当、、共线时,的值最小,最小值,在中,,,在中,.故答案为:.【点睛】本题考查了四边形的动点问题,掌握当、、共线时,的值最小,最小值是解题的关键.18、【解析】
设M,N为CO,EF中点,点到动直线的距离为ON,求解即可.【详解】∵∴SOABC=12∵将矩形分为面积相等的两部分∴SCEOF=×(CE+OF)×2=6∴CE+OF=6设M,N为CO,EF中点,∴MN=3点到动直线的距离的最大值为ON=故答案.【点睛】本题考查的是的动点问题,熟练掌握最大距离的算法是解题的关键三、解答题(共78分)19、(1)①3;②详见解析;(2)①详见解析;②【解析】
(1)①由折叠的性质可得出AB=AB′,根据矩形的性质可得出∠ADB′=90°,在Rt△ADB′中,利用勾股定理即可得出B′D的长度,再根据中位线的性质即可得出结论;
②由点G为AD的中点可求出AG的长度,通过边与边的关系可得出B′C=4,由此得出B′C=AG,再通过角的计算得出∠AHG=B′EC,由此即可根据全等三角形的判定定理AAS证出△AGH≌△B′CE;
(2)①连接BF,由平行线的性质结合直角三角的中线的性质即可得知△B′EF为等边三角形,根据折叠的性质即可证出四边形BEB′F是菱形;
②由等边三角形和平行线的性质可得出∠BEF=∠B′EF=60°,再由AB=10利用特殊角的三角函数值即可得出结论.【详解】(1)①∵将△ABE沿AE折叠得到△AB′E∴AB=AB′∵四边形ABCD为矩形∴∠ADB′=90°在Rt△ADB′中,AD=8,AB′=10∴B′D==6∵点G和点H分别是AD和AB′的中点,∴GH为△ADB′的中位线∴GH=DB′=3②证明:∵GH为△ADB′的中位线∵GH∥DC,AG=AD=4∴∠AHG=∠AB′D∵∠AB′E=∠ABE=90°∴∠AB′D+∠CB′E=90°又∵∠CB′E+∠B′EC=90°∴∠AHG=B′EC∵CD=AB=10,DB′=6∴B′C=4=AG在△AGH和△B′CE中∴△AGH≌△B′CE(AAS).(2)①证明:∵将△ABE沿AE折叠得到△AB′E∴BF=B′F,∠B′EF=∠BEF,BE=B′E∵B′F∥AD,AD∥BC∴B′F∥BC∴∠B′FE=∠BEF=∠B′EF∵∠AB′E=∠ABE=90°,点F为线段AE的中点∴B′F=AE=FE∴△B′EF为等边三角形∴B′F=B′E∵BF=B′F,BE=B′E∴B′F=BF=BE=B′E∴四边形BEB′F是菱形②∵△B′EF为等边三角形∴∠BEF=∠B′EF=60°∴BE=AB•cot∠BEF=10×=∵四边形BEB′F是菱形∴B′F=BE=.【点睛】本题考查了折叠的性质、矩形的性质、中位线的性质、全等三角形的判定定理、等边三角形的判定及性质以及菱形的判定定理,解题的关键是:(1)①利用勾股定理求出DB'的长度;②利用全等三角形的判定定理AAS证出△AGH≌△B′CE;(2)①得出B′EF为等边三角形;③利用特殊角的三角函数值求出BE的长度.本题属于中档题,难度不大.但解题过程稍显繁琐,解决该题型题目时,根据图形的翻折找出相等的边角关系是关键.20、.【解析】
先根据分式混合运算的法则把原式进行化简,再把x的值代入进行计算即可【详解】原式===,当x=1时,原式=.【点睛】此题考查分式的化简求值,解题关键在于利用完全平方公式和提取公因式法进行化简21、36平方米【解析】
连接AC,根据勾股定理,求得AC,再根据勾股定理的逆定理,判断三角形ACD是直角三角形.这块草坪的面积等于两个直角三角形的面积之和.【详解】连接AC,如图,∵AB⊥BC,∴∠ABC=90°.∵AB=3米,BC=4米,∴AC=5米.∵CD=12米,DA=13米,∴CD2+AC2=144+25=169=132=DA2,∴∠ACD=90°,∴△ACD为直角三角形,∴草坪的面积等于=S△ABC+S△ACD=3×4÷2+5×12÷2=6+30=36(米2).【点睛】本题考查了勾股定理和勾股定理的逆定理.22、(1)见解析;(2)∠EMF=40°【解析】
(1)易得△BCE和△BCF都是直角三角形,根据直角三角形斜边上的中线等于斜边的一半可得ME=MF=BC,即可得证;(2)首先根据三角形内角和定理求出∠ACB=60°,然后由(1)可知MF=MB,ME=MC,利用等边对等角可求出∠MFB=50°,∠MEC=60°,从而推出∠BMF和∠CME的度数,即可求∠EMF的度数.【详解】(1)∵CF⊥AB于点F,BE⊥AC于点E,∴△BCE和△BCF为直角三角形∵M为BC的中点∴ME=BC,MF=BC∴ME=MF即△MEF是等腰三角形(2)∵∠A=70°,∠ABC=50°,∴∠ACB=180°-70°-50°=60°由(1)可知MF=MB,ME=MC,∴∠MFB=∠ABC=50°,∠MEC=∠ACB=60°,∴∠BMF=180°-2×50°=80°,∠CME=180°-2×60°=60°∴∠EMF=180°-∠BMF-∠CME=180°-80°-60°=40°【点睛】本题考查了等腰三角形的判定与角度计算,熟练掌握直角三角形斜边上的中线等于斜边的一半是解题的关键.23、(1)证明见解析;(2)能,10;(3)t=或t=12,理由见解析.【解析】
(1)利用矩形的性质和直角三角形中所对应的直角边是斜边的一半进行作答;(2)证明平行四边形是菱形,分情况进行讨论,得到等式;(3)分别讨论若四边形AEOF是平行四边形时,则①∠OFE=90˚或②∠OEF=90˚,分情况讨论列等式.【详解】解:(1)∵四边形ABCD是矩形∴∠B=90˚在Rt△ABC中,∠ACB=90˚-∠BAC=30˚∵AE=2tCF=4t又∵Rt△CO
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2023年南宁市富济劳务有限公司招聘考试真题
- 2023年靖安县县直单位选调工作人员考试真题
- 小学纤维艺术课程教学的探索与研究
- eda课程设计照片
- 东软课程设计
- 客服岗位实习报告
- 2023年第十师北屯市大学生乡村医生招聘考试真题
- 防灾减灾工作总结报告
- 租赁合同权益转让声明
- 购房借款合同书
- 浙人美版七年级美术下册《鲁迅与美术》说课稿
- 单立柱巷道式堆垛机机械设计说明书
- DB22-T 5040-2020 建设工程见证取样检测标准
- 空调维保合同
- 计量经济学期末考试试题及答案
- (4.5)-《动物解剖学》课件-第五章(呼吸系统)
- 心理统计学考研历年真题及答案
- 马工程《中国法制史》课本期末重点笔记整理
- 人教版数学八年级上册《从分数到分式》优质课一等奖创新课件
- 2023最是书香能致远中考满分作文5篇
- 园林景观常用植物图例
评论
0/150
提交评论