版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024年河南省商城县长竹园第一中学八年级数学第二学期期末调研试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每题4分,共48分)1.如图,在平面直角坐标系中,点A是反函数图像上的点,过点A与x轴垂直的直线交x轴于点B,连结AO,若的面积为3,则k的值为()A.3 B.-3C.6 D.-62.如图,取一张长为、宽为的长方形纸片,将它对折两次后得到一张小长方形纸片,若要使小长方形与原长方形相似,则原长方形纸片的边应满足的条件是()A. B. C. D.3.已知,则的关系是()A. B. C. D.4.若二次根式有意义,则的取值范围是()A. B. C. D.5.如图,在矩形中,平分,交边于点,若,,则矩形的周长为()A.11 B.14 C.22 D.286.如图,四边形ABCD为菱形,AB=5,BD=8,AE⊥CD于E,则AE的长为()A. B. C. D.7.如果多项式是一个完全平方式,那么的值为A. B. C. D.8.不等式的解集在数轴上表示为()A. B. C. D.9.如图,正比例函数的图象与一次函数的图象交于点,若点是直线上的一个动点,则线段长的最小值为()A.1 B. C. D.210.如图所示,已知点C(1,0),直线与两坐标轴分别交于A,B两点,D,E分别是线段AB,OA上的动点,则△CDE的周长的最小值是()A. B.10C. D.1211.在下面的汽车标志图形中,是中心对称图形但不是轴对称图形有()A.2个B.3个C.4个D.5个12.如图所示,将一张正方形纸片对折两次,然后在上面打3个洞,则纸片展开后是A. B. C. D.二、填空题(每题4分,共24分)13.若直角三角形的两直角边长为a、b,且满足,则该直角三角形的斜边长为.14.直线中,y随的减小而_______,图象经过______象限.15.计算+×的结果是_____.16.将等腰直角三角形AOB按如图所示放置,然后绕点O逆时针旋转90°至△A′OB′的位置,点B的横坐标为2,则点A′的坐标为.17.直角三角形的两条直角边长分别为、,则这个直角三角形的斜边长为________cm.18.已知:在矩形ABCD中,AD=2AB,点E在直线AD上,连接BE,CE,若BE=AD,则∠BEC的大小为_____度.三、解答题(共78分)19.(8分)为了倡导节约能源,自某日起,我国对居民用电采用阶梯电价,为了使大多数家庭不增加电费支出,事前就需要了解居民全年月平均用电量的分布情况,制订一个合理的方案.某调查人员随机调查了市户居民全年月平均用电量(单位:千瓦时)数据如下:得到如下频数分布表:全年月平均用电量/千时频数频率合计画出频数分布直方图,如下:(1)补全数分布表和率分布直方图(2)若是根据数分布表制成扇形统计图,则不低于千瓦时的部分圆心角的度数为_____________;(3)若市的阶梯电价方案如表所示,你认为这个阶梯电价方案合理吗?档次全年月平均用电量/千瓦时电价(元/千瓦时)第一档第二档第三档大于20.(8分)如图,在平面直角坐标系中,有一Rt△ABC,且A(﹣1,3),B(﹣3,﹣1),C(﹣3,3),已知△A1AC1是由△ABC旋转得到的.(1)请写出旋转中心的坐标是,旋转角是度;(2)以(1)中的旋转中心为中心,分别画出△A1AC1顺时针旋转90°、180°的三角形;(3)设Rt△ABC两直角边BC=a、AC=b、斜边AB=c,利用变换前后所形成的图案证明勾股定理.21.(8分)已知某市2018年企业用水量x(吨)与该月应交的水费y(元)之间的函数关系如图.(1)当x≥50时,求y关于x的函数关系式;(2)若某企业2018年10月份的水费为620元,求该企业2018年10月份的用水量.22.(10分)在正方形ABCD中,连接BD,P为射线CB上的一个动点(与点C不重合),连接AP,AP的垂直平分线交线段BD于点E,连接AE,PE.提出问题:当点P运动时,∠APE的度数是否发生改变?探究问题:(1)首先考察点P的两个特殊位置:①当点P与点B重合时,如图1所示,∠APE=____________°②当BP=BC时,如图2所示,①中的结论是否发生变化?直接写出你的结论:__________;(填“变化”或“不变化”)(2)然后考察点P的一般位置:依题意补全图3,图4,通过观察、测量,发现:(1)中①的结论在一般情况下_________;(填“成立”或“不成立”)(3)证明猜想:若(1)中①的结论在一般情况下成立,请从图3和图4中任选一个进行证明;若不成立,请说明理由.23.(10分)如图,反比例函数y=的图象与一次函数y=mx+b的图象交于两点A(1,3),B(n,-1).(1)求反比例函数与一次函数的函数关系式;(2)根据图象,直接回答:当x取何值时,一次函数的值大于反比例函数的值;(3)连接AO、BO,求△ABO的面积;(4)在y轴上存在点P,使△AOP为等腰三角形,请直接写出点P的坐标.24.(10分)如图,正方形ABCD的顶点坐标分别为A(1,2),B(1,-2),C(5,-2),D(5,2),将正方形ABCD向左平移5个单位,作出它的图像,并写出图像的顶点坐标.25.(12分)如图,在▱ABCD中,对角线AC,BD相交于点O,过点O的一条直线分别交AD,BC于点E,F.求证:AE=CF.26.如图,反比例函数y=(x>0)的图象过格点(网格线的交点)P.(1)求反比例函数的解析式;(2)在图中用直尺和2B铅笔画出两个矩形(不写画法),要求每个矩形均需满足下列两个条件:①四个顶点均在格点上,且其中两个顶点分别是点O,点P;②矩形的面积等于k的值.
参考答案一、选择题(每题4分,共48分)1、D【解析】
根据三角形ABO的面积为3,得到|k|=6,即可得到结论.【详解】解:∵三角形AOB的面积为3,
∴,
∴|k|=6,
∵k<0,
∴k=-6,
故选:D.【点睛】本题考查了反比例函数比例系数k的几何意义:在反比例函数的图象上任意一点向坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是,且保持不变.2、B【解析】
由题图可知:得对折两次后得到的小长方形纸片的长为,宽为,然后根据相似多边形的定义,列出比例式即可求出结论.【详解】解:由题图可知:得对折两次后得到的小长方形纸片的长为,宽为,∵小长方形与原长方形相似,故选B.【点睛】此题考查的是相似三角形的性质,根据相似三角形的定义列比例式是解决此题的关键.3、D【解析】
根据a和b的值去计算各式是否正确即可.【详解】A.,错误;B.,错误;C.,错误;D.,正确;故答案为:D.【点睛】本题考查了实数的运算问题,掌握实数运算法则是解题的关键.4、C【解析】试题分析:由题意得,,解得.故选C.考点:二次根式有意义的条件.5、C【解析】
根据勾股定理求出DC=4,证明BE=AB=4,即可求出矩形的周长;【详解】∵四边形ABCD是矩形,∴∠C=90°,AB=CD;AD∥BC;∵ED=5,EC=3,∴DC=DE−CE=25−9,∴DC=4,AB=4;∵AD∥BC,∴∠AEB=∠DAE;∵AE平分∠BAD,∴∠BAE=∠DAE,∴∠BAE=∠AEB,∴BE=AB=4,矩形的周长=2(4+3+4)=22.故选C【点睛】此题考查矩形的性质,解题关键在于求出DC=46、C【解析】分析:利用勾股定理求出对角线AC的长,再根据S菱形ABCD=•BD•AC=CD•AE,求出AE即可.详解:∵四边形ABCD是菱形,∴AB=CD=5,AC⊥BD,OB=OB=4,OA=OC,在Rt△AOB中,∵AB=5,OB=4,∴OA===3,∴AC=6,∴S菱形ABCD=⋅BD⋅AC=CD⋅AE,∴AE=,故选C.点睛:本题考查了菱形的性质、勾股定理等知识,解题的关键是学会利用面积法求菱形的高,属于中考常考题型.7、D【解析】分析:完全平方差公式是指:,根据公式即可得出答案.详解:根据完全平方公式可得:-m=±6,则m=±6,故选D.点睛:本题主要考查的是完全平方公式,属于基础题型.明白完全平方公式的形式是解题的关键.8、A【解析】
先解不等式2x-3≤3得到x≤3,然后利用数轴表示其解集.【详解】解:移项得2x≤6,
系数化为1得x≤3,
在数轴上表示为:.
故选:A.【点睛】本题考查了在数轴上表示不等式的解集,解一元一次不等式,解题关键在于运用数轴表示不等式的解集比较直观,这也是数形结合思想的应用.9、C【解析】
根据垂线段最短可知线段OP的最小值即为点O到直线AB的距离,求出交点坐标及线段AB的长,由三角形面积即能求出点O到直线AB的距离.【详解】解:联立,解得,所以点A的坐标为(2,3)令,解得,所以B(-2,0)过点A作AC垂直于x轴交于点C,过点O作OP垂直于AB,由垂线段最短可知此时OP最小,在中,由A、B坐标可知,根据勾股定理得.即故答案为:C【点睛】本题考查了函数解析式,涉及的知识点包括由解析式求点坐标、三角形面积、勾股定理,由垂线段最短确定OP位置是解题的关键.10、B【解析】
点C关于OA的对称点C′(-1,0),点C关于直线AB的对称点C″(7,6),连接C′C″与AO交于点E,与AB交于点D,此时△DEC周长最小,可以证明这个最小值就是线段C′C″.【详解】解:如图,点C(1,0)关于y轴的对称点C′(-1,0),点C关于直线AB的对称点C″,
∵直线AB的解析式为y=-x+7,
∴直线CC″的解析式为y=x-1,
由解得,
∴直线AB与直线CC″的交点坐标为K(4,3),
∵K是CC″中点,C(1,0),设C″坐标为(m,n),∴,解得:
∴C″(7,6).
连接C′C″与AO交于点E,与AB交于点D,此时△DEC周长最小,
△DEC的周长=DE+EC+CD=EC′+ED+DC″=C′C″=故答案为1.【点睛】本题考查轴对称-最短问题、两点之间距离公式等知识,解题的关键是利用对称性在找到点D、点E位置,将三角形的周长转化为线段的长.11、A【解析】第2个、第5个是中心对称图形,不是轴对称图形,共2个故选B.12、D【解析】
根据折叠的图形分析可得在正方形的每个边上有三个圆点.共有12个点.【详解】根据折叠的图形分析可得在正方形的每个边上有三个圆点.共有12个点.观察选项即可的D选项符合条件.故选D.【点睛】本题主要考查正方形的折叠问题,关键在于确定数量.二、填空题(每题4分,共24分)13、1.【解析】∵,∴=0,b-2=0,解得a=3,b=2.∵直角三角形的两直角边长为a、b,∴该直角三角形的斜边长=.14、减小第一、三、四【解析】
根据函数解析式和一次函数的性质可以解答本题.【详解】解:直线,,随的减小而减小,函数图象经过第一、三、四象限,故答案为:减小,第一、三、四.【点睛】本题考查一次函数的性质,解答本题的关键是明确题意,利用一次函数的性质解答.15、.【解析】原式===,故答案为.【点睛】本题考查了二次根式的混合运算,准确地对每一个二次根式进行化简,熟练运算法则是解题的关键.16、(-1,1).【解析】
解:过点A作AC⊥x轴于点C,过点A′作A′D⊥x轴,因为ΔOAB是等腰直角三角形,所以有OC=BC=AC=1,∠AOB=∠AOB′=45°,则点A的坐标是(1,1),OA=,又∠A′OB′=45°,所以∠A′OD=45°,OA′=,在RtΔA′OD中,cos∠A′OD=,所以OD=1,A′D=1,所以点A′的坐标是(-1,1).考点:1、旋转的性质;2、等腰三角形的性质.17、【解析】
利用勾股定理直接计算可得答案.【详解】解:由勾股定理得:斜边故答案为:.【点睛】本题考查的是勾股定理的应用,掌握勾股定理是解题的关键.18、75或1【解析】
分两种情况:①当点E在线段AD上时,BE=AD,由矩形的性质得出BC=AD=BE=2AB,∠BAE=90°,AD∥BC,得出BE=2AB,∠BEC=∠BCE,∠CBE=∠AEB,得出AB=BE,证出∠AEB=30°,得出∠CBE=30°,即可得出结果;②点E在DA延长线上时,BE=AD,同①得出∠AEB=30°,由直角三角形的性质得出∠ABE=60°,求出∠CBE=90°+60°=10°,即可得出结果.【详解】解:分两种情况:①当点E在线段AD上时,BE=AD,如图1所示:∵四边形ABCD为矩形,∴BC=AD=BE=2AB,∠BAE=90°,AD∥BC,∴BE=2AB,∠BEC=∠BCE,∠CBE=∠AEB,∴AB=BE,∴∠AEB=30°,∴∠CBE=30°,∴∠BEC=∠CBE=(180°﹣30°)=75°;②点E在DA延长线上时,BE=AD,如图2所示:∵四边形ABCD为矩形,∴BC=AD=BE=2AB,∠ABC=∠BAE=∠BAD=90°,∴BE=2AB,∠BEC=∠BCE,∴AB=BE,∴∠AEB=30°,∴∠ABE=60°,∴∠CBE=90°+60°=10°,∴∠BEC=∠BCE=(180°﹣10°)=1°;故答案为:75或1.【点睛】本题考查了矩形的性质、直角三角形的性质、平行线的性质、等腰三角形的性质等知识;熟练掌握矩形的性质,进行分类讨论是解题的关键.三、解答题(共78分)19、(1)详见解析;(2)144°;(3)合理,理由详见解析.【解析】
(1)统计出各组的频数,即可补全频数分布表,根据频数分布表中频率,可以补全频率分布直方图,
(2)用360°乘以不等于160千瓦时的部分所占的百分比即可,
(3)通过覆盖的程度,以及第一档所占的百分比,确定合理性.【详解】(1)全年月平均用电量/千时频数频率合计(2)360°×(24%+10%+6%)=144°(3)合理;从统计图表中看出,全年月平均用电量小于千万时的有户,占,即第一档全年月平均用电量覆盖了大多数居民家庭,所以说是合理的.【点睛】考查频率分布直方图、频率分布表、以及扇形统计图的制作方法,理清图表之间的关系,是解决问题的关键.20、(1)O(0,0);90;(1)图形详见解析;(3)证明详见解析.【解析】试题分析:(1)由图形可知,对应点的连线CC1、AA1的垂直平分线过点O,根据旋转变换的性质,点O即为旋转中心,再根据网格结构,观察可得旋转角为90°;(1)利用网格结构,分别找出旋转后对应点的位置,然后顺次连接即可;(3)利用面积,根据正方形CC1C1C3的面积等于正方形AA1A1B的面积加上△ABC的面积的4倍,列式计算即可得证.试题解析:解:(1)旋转中心坐标是O(0,0),旋转角是90度;(1)画出的图形如图所示;(3)有旋转的过程可知,四边形CC1C1C3和四边形AA1A1B是正方形.∵S正方形CC1C1C3=S正方形AA1A1B+4S△ABC,∴(a+b)1=c1+4×ab,即a1+1ab+b1=c1+1ab,∴a1+b1=c1.考点:作图-旋转变换;勾股定理的证明.21、(1)y=6x﹣100;(2)1吨【解析】
(1)设y关于x的函数关系式y=kx+b,然后利用待定系数法求一次函数解析式解答;(2)把水费620元代入函数关系式解方程即可.【详解】(1)设y关于x的函数关系式y=kx+b,则:解得:,所以,y关于x的函数关系式是y=6x﹣100;(2)由图可知,当y=620时,x>50,所以,6x﹣100=620,解得:x=1.答:该企业2018年10月份的用水量为1吨.【点睛】本题考查了一次函数的应用,主要利用了待定系数法求一次函数解析式,已知函数值求自变量.22、(1)①45;②不变化;(2)成立;(3)详见解析.【解析】
(1)①②根据正方形的性质、线段的垂直平分线的性质即可判断;(2)画出图形即可判断,结论仍然成立;(3)如图2-1中或2-2中,作作EF⊥BC,EG⊥AB,证Rt△EAG≅Rt△EPF得∠AEG=∠PEF.由∠ABC=∠EFB=∠EGB=90°知∠GEF=∠GEP+∠PEF=90°.继而得∠AEP=∠AEG+∠GEP=∠PEF+∠GEP=90°.从而得出∠APE=∠EAP=45°.【详解】解(1)①当点P与点B重合时,如图1-1所示:∵四边形ABCD是正方形,∴∠APE=45°②当BP=BC时,如图1-2所示,①中的结论不发生变化;故答案为:45°,不变化.(2)(2)如图2-1,如图2-2中,结论仍然成立;故答案为:成立;(3)证明一:如图所示.过点E作EF⊥BC于点F,EG⊥AB于点G.∵点E在AP的垂直平分线上,∴EA=EP.∵四边形ABCD为正方形,∴BD平分∠ABC.∴EG=EF.∴RtΔEAG≌RtΔEPF.∴∠AEG=∠PEF.∵∠ABC=∠EFB=∠EGB=90°,∴∠GEF=∠GEP+∠PEF=90°.∴∠AEP=∠AEG+∠GEP=∠PEF+∠GEP=90°.∴∠APE=∠EAP=45°.证明二:如图所示.过点E作EF⊥AD于点F,延长FE交BC于点G,连接CE.∵点E在AP的垂直平分线上,∴EA=EP.∵四边形ABCD为正方形,∴BA=BC ∴ΔBAE≌ΔBCE.∴EC=EA=EP,∠EAB=∠ECB.∴∠EPC=∠ECP=∠EAB.又∵∠BPE+∠EPC=180°,∴∠BPE+∠EAB=180°.又∵∠EAB+∠ABP+∠BPE+∠AEP=360° ∴∠AEP=90°.∴∠APE=∠EAP=45°.【点睛】本题是四边形的综合问题,解题的关键是掌握正方形的性质、全等三角形的判定与性质、中垂线的性质等知识点23、(1)y=,y=x+2;(2)-1<x<0或x>1;(1)3;(3)P(0,-
)或P(0,)或P(0,6)或P(0,).【解析】
(1)利用待定系数法求得一次函数与反比例函数的解析式;
(2)根据图象,当自变量取相同的值时,函数图象对应的点在上边的函数值大,据此即可确定;
(1)设一次函数交y轴于D,根据S△ABO=S△DBO+S△DAO即可求解;
(3)求得OA的长度,分O是顶角的顶点,和A是顶角顶点,以及OA是底边三种情况进行讨论即可求解.【详解】解:(1)∵A(1,1)在反比例函数图象上,∴k=1,
∵B(n,-1)在y=的图象上,
∴n=-1.
∵A(1,1),B(-1,-1)在一次函数y=mx+b图象上,
∴,
解得m=1,b=2.
∴两函数关系式分别是:y=和y=x+2.
(2)由图象得:当-1<x<0或x>1时,一次函数的值大于反比例函数的值;
(1)设一次函数y=x+2交y轴于D,则D(0,2),则OD=2,
∵A(1,1),B(-1,-1)
∴S△DBO=×1×2=1,S△DAO=×1×2=1
∴S△ABO=S△DBO+S△DAO=3.
(3)OA==,O是△AOP顶角的顶点时,OP=OA,则P(0,-
)或P(0,)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 天然气管道保护方案
- 物资报废申请报告
- 凝析油生产水系统
- 2024-2025学年新教材高中生物第1章遗传因子的发现第2节孟德尔的豌豆杂交实验二课堂作业含解析新人教版必修2
- 山东专用2025版高考历史一轮复习模块4选修内容选修4中外历史人物评说学案含解析新人教版
- 2025届高考物理一轮复习第5章机械能及其守恒定律第2节动能定理及其应用教案新人教版
- 2024国考(地市)常识判断真题完美版
- 办公自动化教案首页:2024年新视角
- 面对2024:教案编写中的电机与变压器技术前瞻
- 网络语音电话系统服务合同
- 思想道德与法治课件:第四章 第一节 全体人民共同的价值追求则
- 战略管理教学ppt课件(完整版)
- DB32-T 3129-2016适合机械化作业的单体钢架塑料大棚 技术规范-(高清现行)
- 高危新生儿急诊服务流程图
- 人教版八年级上册Unit 2 How often do you exercise听说课的集体备课教学设计
- 五四制青岛版2022-2023五年级科学上册第八单元第26课《我们的住宅》课件(定稿)
- 健康教育学【完整版】
- 近代笛箫制作师承
- 空调系统设计规范及标准(全)
- 《社会医学》课件11健康危险因素评价
- DB34T 3826-2021 保温板外墙外保温工程技术标准 (1)
评论
0/150
提交评论