辽宁省锦州市北镇市第一初级中学2024届八年级下册数学期末质量跟踪监视模拟试题含解析_第1页
辽宁省锦州市北镇市第一初级中学2024届八年级下册数学期末质量跟踪监视模拟试题含解析_第2页
辽宁省锦州市北镇市第一初级中学2024届八年级下册数学期末质量跟踪监视模拟试题含解析_第3页
辽宁省锦州市北镇市第一初级中学2024届八年级下册数学期末质量跟踪监视模拟试题含解析_第4页
辽宁省锦州市北镇市第一初级中学2024届八年级下册数学期末质量跟踪监视模拟试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

辽宁省锦州市北镇市第一初级中学2024届八年级下册数学期末质量跟踪监视模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题3分,共30分)1.一个多边形的内角和与外角和相等,则这个多边形的边数为()A.8 B.6 C.5 D.42.小李家装修地面,已有正三角形形状的地砖,现打算购买不同形状的另一种正多边形地砖,与正三角形地砖一起铺设地面,则小李不应购买的地砖形状是()A.正方形 B.正六边形C.正八边形 D.正十二边形3.为了解某校计算机考试情况,抽取了50名学生的计算机考试成绩进行统计,统计结果如表所示,则50名学生计算机考试成绩的众数、中位数分别为()考试分数(分)2016128人数241853A.20,16 B.l6,20 C.20,l2 D.16,l24.有一组数据a=-10,b=0,c=11,d=17,e=17,f=31,若去掉c,下列叙述正确的是()A.只对平均数有影响 B.只对众数有影响C.只对中位数有影响 D.对平均数、中位数都有影响5.如图所示的四边形,与选项中的四边形一定相似的是()A. B.C. D.6.如图,将平行四边形ABCD绕点A逆时针旋转40°,得到平行四边形AB′C′D′,若点B′恰好落在BC边上,则∠DC′B′的度数为(

)A.60° B.65° C.70° D.75°7.把多项式分解因式,下列结果正确的是()A. B. C. D.8.如图,矩形ABCD中,E是AD的中点,将沿直线BE折叠后得到,延长BG交CD于点F若,则FD的长为()A.3 B. C. D.9.关于一组数据:1,5,6,3,5,下列说法错误的是()A.平均数是4 B.众数是5 C.中位数是6 D.方差是3.210.如图,E,F分别是正方形ABCD边AD、BC上的两定点,M是线段EF上的一点,过M的直线与正方形ABCD的边交于点P和点H,且PH=EF,则满足条件的直线PH最多有(

)条A.1 B.2 C.3 D.4二、填空题(每小题3分,共24分)11.如图,四边形ABCD为菱形,∠D=60°,AB=4,E为边BC上的动点,连接AE,作AE的垂直平分线GF交直线CD于F点,垂足为点G,则线段GF的最小值为____________.12.如图,在4×4正方形网格中,任选取一个白色的小正方形并涂黑,使图中黑色部分的图形构成一个轴对称图形的概率是______.13.若,则y_______(填“是”或“不是”)x的函数.14.古语说:“春眠不觉晓”,每到初春时分,想必有不少人变得嗜睡,而且睡醒后精神不佳.我们可以在饮食方面进行防治,比如以下食物可防治春困:香椿、大蒜、韭菜、山药、麦片.春天即将来临时,某商人抓住商机,购进甲、乙、丙三种麦片,已知销售每袋甲种麦片的利润率为10%,每袋乙种麦片的利润率为20%,每袋丙种麦片的利润率为30%,当售出的甲、乙、丙三种麦片的袋数之比为1:3:1时,商人得到的总利润率为22%;当售出的甲、乙、丙三种变片的袋数之比为3:2:1时,商人得到的总利润率为20%:那么当售出的甲、乙、丙三种麦片的袋数之比为2:3;4时,这个商人得到的总利润率为_____(用百分号表最终结果).15.对甲、乙、丙三名射击手进行20次测试,平均成绩都是环,方差分别是,,,在这三名射击手中成绩最稳定的是______.16.二次根式中,x的取值范围是.17.在两条垂直相交的道路上,一辆自行车和一辆摩托车相遇后又分别向北向东驶去,若自行车与摩托车每秒分别行驶7.5米、10米,则10秒后两车相距______米;18.已知菱形ABCD的两条对角线分别为6和8,M、N分别是边BC、CD的中点,P是对角线BD上一点,则PM+PN的最小值=___.三、解答题(共66分)19.(10分)甲、乙两车分别从、两地同时出发,甲车匀速前往地,到达地后立即以另一速度按原路匀速返回到地;乙车匀速前往地,设甲、乙两车距地的路程为(千米),甲车行驶的时间为时),与之间的函数图象如图所示(1)甲车从地到地的速度是__________千米/时,乙车的速度是__________千米/时;(2)求甲车从地到达地的行驶时间;(3)求甲车返回时与之间的函数关系式,并写出自变量的取值范围;(4)求乙车到达地时甲车距地的路程.20.(6分)计算(1);(2).21.(6分)已知与成正比例,且当时,,则当时,求的值.22.(8分)小明想利用太阳光测量楼高.他带着皮尺来到一栋楼下,发现对面墙上有这栋楼的影子,针对这种情况,他设计了一种测量方案,具体测量情况如下:如图,小明边移动边观察,发现站到点E处时,可以使自己落在墙上的影子与这栋楼落在墙上的影子重叠,且高度恰好相同.此时,测得小明落在墙上的影子高度CD=1.2m,CE=0.8m,CA=30m.(点A,E,C在同一直线上),已知小明的身高EF是1.7m,请你帮小明求出楼高AB.(结果精确到0.1m)23.(8分)如图,在△ABC中,∠ABC=90°,将△ABC绕点C顺时针旋转得到△DEC,连接AD,BE,延长BE交AD于点F.(1)求证:∠DEF=∠ABF;(2)求证:F为AD的中点;(3)若AB=8,AC=10,且EC⊥BC,求EF的长.24.(8分)甲、乙两人参加射击比赛,两人成绩如图所示.(1)填表:平均数方差中位数众数甲717乙9(2)只看平均数和方差,成绩更好的是.(填“甲”或“乙”)(3)仅就折线图上两人射击命中环数的走势看,更有潜力的是.(填“甲”或“乙”)25.(10分)已知:在中,,为的中点,,,垂足分别为点,且.求证:是等边三角形.26.(10分)某批发商以每件50元的价格购进800件T恤,第一个月以单价80元销售,售出了200件;第二个月如果单价不变,预计仍可售出200件,批发商为增加销售量,决定降价销售,根据市场调查,单价每降低1元,可多售出10件,但最低单价应高于购进的价格;第二个月结束后,批发商将对剩余的T恤一次性清仓销售,清仓是单价为40元,设第二个月单价降低元.(1)填表:(不需化简)(2)如果批发商希望通过销售这批T恤获利9000元,那么第二个月的单价应是多少元?

参考答案一、选择题(每小题3分,共30分)1、D【解析】

利用多边形的内角和与外角和公式列出方程,然后解方程即可.【详解】设多边形的边数为n,根据题意

(n-2)•180°=360°,

解得n=1.

故选:D.【点睛】本题考查了多边形的内角和公式与多边形的外角和定理,需要注意,多边形的外角和与边数无关,任何多边形的外角和都是360°.2、C【解析】

根据密铺的条件得,两多边形内角和必须凑出360°,进而判断即可.【详解】A.正方形的每个内角是,∴能密铺;B.正六边形每个内角是,∴能密铺;C.正八边形每个内角是,与无论怎样也不能组成360°的角,∴不能密铺;D.正十二边形每个内角是∴能密铺.故选:C.【点睛】本题主要考查平面图形的镶嵌,根据平面镶嵌的原理:拼接点处的几个多边形的内角和恰好等于一个圆周角.3、A【解析】

找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数,众数是一组数据中出现次数最多的数据,注意众数可以不止一个.【详解】解:在这一组数据中20是出现次数最多的,故众数是20;将这组数据从大到小的顺序排列后,处于中间位置的数是1,1,那么这组数据的中位数1.故选:A.【点睛】本题为统计题,考查众数与中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.众数是一组数据中出现次数最多的数.4、C【解析】

分别计算出去掉c前后的平均数,中位数和众数,进行比较即可得出答案.【详解】去掉c之前:平均数为:,中位数是,众数是17;去掉c之后:平均数为:,中位数是,众数是17;通过对比发现,去掉c,只对中位数有影响,故选:C.【点睛】本题主要考查平均数,中位数和众数,掌握平均数,中位数和众数的求法是解题的关键.5、D【解析】

根据勾股定理求出四边形ABCD的四条边之比,根据相似多边形的判定方法判断即可.【详解】作AE⊥BC于E,则四边形AECD为矩形,∴EC=AD=1,AE=CD=3,∴BE=4,由勾股定理得,AB==5,∴四边形ABCD的四条边之比为1:3:5:5,D选项中,四条边之比为1:3:5:5,且对应角相等,故选:D.【点睛】此题考查相似多边形的判定定理,两个多边形的对应角相等,对应边成比例,则这两个多边形相似,此题求出多边形的剩余边长是解题的关键,利用矩形的性质定理,勾股定理求出边长.6、C【解析】

先根据旋转得出△ABB'是等腰三角形,再根据旋转的性质以及平行四边形的性质,判定三角形AOB'和△DOC'都是等腰三角形,最后根据∠DOC'的度数,求得∠DC'B'的度数.【详解】由旋转得,∠BAB'=40°,AB=AB',∠B=∠AB'C',∴∠B=∠AB'B=∠AB'C'=70°,∵AD∥BC,∴∠DAB'=∠AB'C'=70°,∴AO=B'O,∠AOB=∠DOC'=40°,又∵AD=B'C',∴OD=OC',∴△ODC'中,∠DC'O=故选C.【点睛】考查了旋转的性质,解决问题的关键是掌握等腰三角形的性质与平行四边形的性质.在旋转过程中,对应点到旋转中心的距离相等,对应点与旋转中心所连线段的夹角等于旋转角.7、A【解析】

利用因式分解即可解答本题.(x+p)(x+q)=x2+(p+q)x+pq【详解】解:x2+x−2=(x−1)(x+2)故选:A.【点睛】本题主要靠着因式分解的相关知识,要熟练应用十字相乘法.8、C【解析】

根据点E是AD的中点以及翻折的性质可以求出AE=DE=EG,然后利用“HL”证明△EDF和△EGF全等,根据全等三角形对应边相等可证得DF=GF;设FD=x,表示出FC、BF,然后在Rt△BCF中,利用勾股定理列式进行计算即可得解.【详解】∵E是AD的中点,∴AE=DE,∵△ABE沿BE折叠后得到△GBE∴AE=EG,AB=BG,∴ED=EG,∵在矩形ABCD中,∴∠A=∠D=90°,∴∠EGF=90°,∵在Rt△EDF和Rt△EGF中,,∴Rt△EDF≌Rt△EGF(HL),∴DF=FG,设DF=x,则BF=6+x,CF=6-x,在Rt△BCF中,102+(6-x)2=(6+x)2,解得x=.故选C.【点睛】本题考查了矩形的性质,全等三角形的判定与性质,勾股定理的应用,翻折的性质,熟记性质,找出三角形全等的条件ED=EG是解题的关键.9、C【解析】

解:A.这组数据的平均数是(1+5+6+3+5)÷5=4,故本选项正确;B.5出现了2次,出现的次数最多,则众数是3,故本选项正确;C.把这组数据从小到大排列为:1,3,5,5,6,最中间的数是5,则中位数是5,故本选项错误;D.这组数据的方差是:[(1﹣4)2+(5﹣4)2+(6﹣4)2+(3﹣4)2+(5﹣4)2]=3.2,故本选项正确;故选C.考点:方差;算术平均数;中位数;众数.10、C【解析】

如图1,过点B作BG∥EF,过点C作CN∥PH,利用正方形的性质,可证得AB∥CD,AD∥BC,∠A=∠NBC=90°,AB=BC,再证明BG=CN,利用HL证明Rt△ABG≌Rt△CBN,根据全等三角形的对应角相等,可知∠ABG=∠BCN,然后证明PH⊥EF即可,因此过点M作EF的垂线满足的有一条直线;图2中还有2条,即可得出答案.【详解】解:如图1,过点B作BG∥EF,过点C作CN∥PH,∵正方形ABCD,∴AB∥CD,AD∥BC,∠A=∠NBC=90°,AB=BC,∴四边形BGEF,四边形PNCH是平行四边形,

EF=BG,PH=CN,∵PH=EF,∴BG=CN,在Rt△ABG和Rt△CBN中,BG=CN∴Rt△ABG≌Rt△CBN(HL)∴∠ABG=∠BCN,∵∠ABG+∠GBC=90°∴∠BCN+∠GBC=90°,∴BG⊥CN,∴PH⊥EF,∴过点M作EF的垂线满足的有一条直线;如图2图2中有两条P1H1,P2H2,所以满足条件的直线PH最多有3条,故答案为:C【点睛】本题考查了正方形的性质、等腰三角形的性质、全等三角形的判定与性质、熟练掌握正方形的性质是关键.二、填空题(每小题3分,共24分)11、1【解析】

作辅助线,构建三角形全等,证明Rt△AFM≌Rt△EFN(HL),得∠AFM=∠EFN,再证明△AEF是等边三角形,计算FG=AG=AE,确认当AE⊥BC时,即AE=2时,FG最小.【详解】解:连接AC,过点F作FM⊥AC于,作FN⊥BC于N,连接AF、EF,∵四边形ABCD是菱形,且∠D=60°,∴∠B=∠D=60°,AD∥BC,∴∠FCN=∠D=60°=∠FCM,∴FM=FN,∵FG垂直平分AE,∴AF=EF,∴Rt△AFM≌Rt△EFN(HL),∴∠AFM=∠EFN,∴∠AFE=∠MFN,∵∠FMC=∠FNC=90°,∠MCN=120°,∴∠MFN=60°,∴∠AFE=60°,∴△AEF是等边三角形,∴FG=AG=AE,∴当AE⊥BC时,Rt△ABE中,∠B=60°,∴∠BAE=10°,∵AB=4,∴BE=2,AE=2,∴当AE⊥BC时,即AE=2时,FG最小,最小为1;故答案为1.【点睛】本题考查了菱形的性质,等边三角形的判定,三角形全等的性质和判定,垂线段的性质等知识,本题有难度,证明△AEF是等边三角形是本题的关键.12、【解析】

根据轴对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合,白色的小正方形有12个,而能构成一个轴对称图形的有2个情况(如图所示)∴使图中黑色部分的图形构成一个轴对称图形的概率是.13、不是【解析】

根据函数的定义可知,满足对于x的每一个取值,y都有唯一确定的值与之对应的关系,据此即可判断.【详解】对于x的值,y的对应值不唯一,故不是函数,故答案为:不是.【点睛】本题是对函数定义的考查,熟练掌握函数的定义是解决本题的关键.14、25%.【解析】

设甲、乙、丙三种蜂蜜的进价分别为a、b、c,丙蜂蜜售出瓶数为cx,则当售出的甲、乙、丙蜂蜜瓶数之比为1:3:1时,甲、乙蜂蜜售出瓶数分别为ax、3bx;当售出的甲、乙、丙蜂蜜瓶数之比为3:2:1时,甲、乙蜂蜜售出瓶数分别为3ax、2bx;列出方程,解方程求出,即可得出结果.【详解】解:设甲、乙、丙三种麦片的进价分别为a、b、c,丙麦片售出袋数为cx,由题意得:,解得:,∴,故答案为:25%.【点睛】本题考查了方程思想解决实际问题,解题的关键是通过题意列出方程,得出a、b、c的关系,进而求出利润率.15、乙【解析】

根据方差的意义,结合三人的方差进行判断即可得答案.【详解】解:∵甲、乙、丙三名射击手进行20次测试,平均成绩都是9.3环,方差分别是3.5,0.2,1.8,3.5>1.8>0.2,∴在这三名射击手中成绩最稳定的是乙,故答案为乙.【点睛】本题考查了方差的意义,利用方差越小成绩越稳定得出是解题关键.16、.【解析】根据二次根式被开方数必须是非负数的条件,要使在实数范围内有意义,必须.17、1【解析】

直接根据题意画出直角三角形,进而利用勾股定理得出答案.【详解】解:如图所示:由题意可得,在Rt△ACB中,AC=75m,BC=100m,

则AB==1(m),

故答案为:1.【点睛】本题考查了勾股定理的应用,正确画出图形是解题的关键.18、1.【解析】

作M关于BD的对称点Q,连接NQ,交BD于P,连接MP,此时MP+NP的值最小,连接AC,求出CP、PB,根据勾股定理求出BC长,证出MP+NP=QN=BC,即可得出答案.【详解】解:作M关于BD的对称点Q,连接NQ,交BD于P,连接MP,此时MP+NP的值最小,连接AC,∵四边形ABCD是菱形,∴AC⊥BD,∠QBP=∠MBP,即Q在AB上,∵MQ⊥BD,∴AC∥MQ,∵M为BC中点,∴Q为AB中点,∵N为CD中点,四边形ABCD是菱形,∴BQ∥CD,BQ=CN,∴四边形BQNC是平行四边形,∴NQ=BC,∵四边形ABCD是菱形,∴CP=AC=3,BP=BD=4,在Rt△BPC中,由勾股定理得:BC=1,即NQ=1,∴MP+NP=QP+NP=QN=1,故答案为1【点睛】本题考查轴对称-最短路线问题;菱形的性质.三、解答题(共66分)19、(1);(2)甲车从地到达地的行驶时间是2.5小时;(3)甲车返回时与之间的函数关系式是;(4)乙车到达地时甲车距地的路程是175千米.【解析】

(1)根据题意列算式计算即可得到结论;(2)根据题意列算式计算即可得到结论;(3)设甲车返回时与之间的函数关系式为y=kt+b,根据题意列方程组求解即可得到结论;(4)根据题意列算式计算即可得到结论.【详解】解:(1)甲车从A地开往B地时的速度是:180÷1.5=120千米/时,乙车从B地开往A地的速度是:(300-180)÷1.5=80千米/时,

故答案为:120;80;(2)(小时)答:甲车从地到达地的行驶时间是2.5小时(3)设甲车返回时与之间的函数关系式为,则有解得:,∴甲车返回时与之间的函数关系式是(4)小时,把代入得:答:乙车到达地时甲车距地的路程是175千米.【点睛】本题考查了待定系数法及一次函数的解析式的运用,行程问题的数量关系的运用,解答时正确看图理解题意和求出一次函数的解析式是关键.20、(1);(2).【解析】

(1)先根据二次根式的性质进行化简,再去括号进行运算,即可得到答案;(2)先根据二次根式的性质进行化简,进行运算,即可得到答案.【详解】(1)===2(2)==【点睛】本题考查二次根式的混合运算,解题的关键是先化简再进行计算.21、12.【解析】

利用正比例函数的定义,设y=k(x-2),然后把已知的一组对应值代入求出k即可得到y与x的关系式;再将x=5代入已求解析式,从而可求出y的值.【详解】设,把代入得,解得,∴,即,当时,.【点睛】本题考查考查了待定系数法求一次函数解析式:先设出函数的一般形式,如求一次函数的解析式时,先设y=kx+b;再将自变量x的值及与它对应的函数值y的值代入所设的解析式,得到关于待定系数的方程或方程组;然后解方程或方程组,求出待定系数的值,进而写出函数解析式.22、21.1米.【解析】试题分析:将实际问题转化为数学问题进行解答;解题时要注意构造相似三角形,利用相似三角形的相似比,列出方程,通过解方程求解即可.解:过点D作DG⊥AB,分别交AB、EF于点G、H,∵AB∥CD,DG⊥AB,AB⊥AC,∴四边形ACDG是矩形,∴EH=AG=CD=1.2,DH=CE=1.8,DG=CA=31,∵EF∥AB,∴,由题意,知FH=EF﹣EH=1.7﹣1.2=1.5,∴,解得,BG=18.75,∴AB=BG+AG=18.75+1.2=19.95≈21.1.∴楼高AB约为21.1米.考点:相似三角形的应用.23、(1)见解析;(2)见解析;(3)【解析】

(1)根据等角的余角相等证明即可;(2)如图1中,作AN⊥BF于N,DM⊥BF交BF的延长线于M,首先证明△ANB≌△DME,可得AN=DM,然后证明△AFN≌△DFM,求出AF=FD即可;(3)如图2中,作AN⊥BF于N,DM⊥BF交BF的延长线于M,想办法求出FM,EM即可.【详解】(1)证明:∵CB=CE,∴∠CBE=∠CEB,∵∠ABC=∠CED=90°,∴∠DEF+∠CEB=90°,∠ABF+∠CBE=90°,∴∠DEF=∠ABF.(2)证明:如图1中,作AN⊥BF于N,DM⊥BF交BF的延长线于M.∵∠ABN=∠DEM,∠ANB=∠M=90°,AB=DE,∴△ANB≌△DME(AAS),∴AN=DM,∵∠ANF=∠M=90°,∠AFN=∠DFM,AN=DM,∴△AFN≌△DFM(AAS),∴AF=FD,即F为AD的中点;(3)如图2中,作AN⊥BF于N,DM⊥BF交BF的延长线于M.在Rt△ABC中,∵∠ABC=90°,AC=10,AB=8,∴BC=EC==6,∵EC⊥BC,∴∠BCE=∠ACD=90°,∵AC=CD=10,∴AD=10,∴DF=AF=5,∵∠MED=∠CEB=45°,∴EM=MD=

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论