版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届山西省灵石县数学八年级下册期末检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.判断由线段a,b,c能组成直角三角形的是()A.a=32,b=42,c=52B.a=,b=,c=C.a=,b=,c=D.a=3-1,b=4-1,c=5-12.一次函数y=kx+b(k,b是常数,k≠0)的图象如图所示,则不等式kx+b>0的解集为()A.x>-3 B.x>0 C.x<-2 D.x<03.如图1,在矩形ABCD中,动点E从点B出发,沿BADC方向运动至点C处停止,设点E运动的路程为x,△BCE的面积为y,如果y关于x的函数图象如图2所示,则当x=7时,点EA.点C处 B.点D处 C.点B处 D.点A处4.直线y=x-2与x轴的交点坐标是()A.(2,0) B.(-2,0) C.(0,-2) D.(0,2)5.下列4个命题:①对角线相等且互相平分的四边形是正方形;②有三个角是直角的四边形是矩形;③对角线互相垂直的平行四边形是菱形;④一组对边平行,另一组对边相等的四边形是平行四边形其中正确的是()A.②③ B.② C.①②④ D.③④6.如图直线l1:y=ax+b,与直线l2:y=mx+n交于点A(1,3),那么不等式ax+b<mx+n的解集是()A.x>3
B.x<3
C.x>1
D.x<17.如图,动点P从出发,沿箭头所示方向运动,每当碰到矩形的边时反弹,反弹时反射角等于入射角当点P第2018次碰到矩形的边时,点P的坐标为A. B. C. D.8.如图①,正方形中,点以每秒2cm的速度从点出发,沿的路径运动,到点停止.过点作与边(或边)交于点的长度与点的运动时间(秒)的函数图象如图②所示.当点运动3秒时,的面积为()A. B. C. D.9.已知,顺次连接矩形各边的中点,得到一个菱形,如图1;再顺次连接菱形各边的中点,得到一个新的矩形,如图2;然后顺次连接新的矩形各边的中点得到一个新的菱形,如图3;……如此反复操作下去,则第2018个图形中直角三角形的个数有()A.2018个 B.2017个 C.4028个 D.4036个10.使二次根式有意义的x的取值范围是().A. B. C. D.二、填空题(每小题3分,共24分)11.如图,过矩形ABCD的对角线BD上一点K分别作矩形两边的平行线MN与PQ,那么图中矩形AMKP的面积S1与矩形QCNK的面积S2的大小关系是S1_____S2;(填“>”或“<”或“=”)12.已知直线y=kx+b与y=2x+1平行,且经过点(﹣3,4),则函数y=kx+b的图象可以看作由函数y=2x+1的图象向上平移_____个单位长度得到的.13.在菱形中,已知,,那么__________(结果用向量,的式子表示).14.下列4种图案中,既是轴对称图形,又是中心对称图形的有__________个.15.某市规定了每月用水不超过l8立方米和超过18立方米两种不同的收费标准,该市用户每月应交水费y(元)是用水x(立方米)的函数,其图象如图所示.已知小丽家3月份交了水费102元,则小丽家这个月用水量为_____立方米.16.根式+1的相反数是_____.17.如图,为等边三角形,,,点为线段上的动点,连接,以为边作等边,连接,则线段的最小值为___________.18.如图所示,在Rt△ABC中,∠C=90°,AC=4,将△ABC沿CB向右平移得到△DEF,若平移距离为2,则四边形ABED的面积等于_______.三、解答题(共66分)19.(10分)随着我国经济社会的发展,人民对于美好生活的追求越来越高,外出旅游已成为时尚.某社区为了了解家庭旅游消费情况,随机抽取部分家庭,对每户家庭的年旅游消费金额进行问卷调査,根据调查结果绘制成两幅不完整的统计图表.请你根据统计图表提供的信息,解答下列问题:组别家庭年旅游消费金额x(元)户数Ax≤400027B4000<x≤8000aC8000<x≤1200024D12000<x≤1600014Ex>160006(1)本次被调査的家庭有户,表中a=;(2)本次调查数据的中位数出现在组.扇形统计图中,E组所在扇形的圆心角是度;(3)若这个社区有2700户家庭,请你估计家庭年旅游消费8000元以上的家庭有多少户?20.(6分)如图,在中,,点P从点A开始,沿AB向点B以的速度移动,点Q从B点开始沿BC
以的速度移动,如果P、Q分别从A、B同时出发:几秒后四边形APQC的面积是31平方厘米;若用S表示四边形APQC的面积,在经过多长时间S取得最小值?并求出最小值.21.(6分)如图,已知直线l1:y=-2x+4与x、y轴分别交于点N、C,与直线l2:y=kx+b(k≠0)交于点M,点M的横坐标为1,直线l2与x轴的交点为A(-2,0)(1)求k,b的值;(2)求四边形MNOB的面积.22.(8分)某商店第一次用6000元购进了练习本若干本,第二次又用6000元购进该款练习本,但这次每本进货的价格是第一次进货价格的1.2倍,购进数量比第一次少了1000本.(1)问:第一次每本的进货价是多少元?(2)若要求这两次购进的练习本按同一价格全部销售完毕后获利不低于4500元,问每本售价至少是多少元?23.(8分)(1)计算:.(2)已知、、是的三边长,且满足,,,试判断该三角形的形状.24.(8分)四川汶川大地震牵动了三百多万滨州人民的心,全市广大中学生纷纷伸出了援助之手,为抗震救灾踊跃捐款。滨州市振兴中学某班的学生对本校学生自愿捐款活动进行抽样调查,得到了一组学生捐款情况的数据。下图是根据这组数据绘制的统计图,图中从左到右各长方形的高度之比为3:4:5:8:6,又知此次调查中捐款25元和30元的学生一共42人。(1)他们一共调查了多少人?(2)这组数据的众数、中位数各是多少?(3)若该校共有1560名学生,估计全校学生捐款多少元?25.(10分)如图,已知△ABC.利用直尺和圆规,根据下列要求作图(不写作法,保留作图痕迹),并回答问题.(1)作∠ABC的平分线BD、交AC于点D;(2)作线段BD的垂直平分线,交AB于点E,交BC于点F,连接DE,DF;(3)写出你所作出的图形中的相等线段.26.(10分)某商场购进一批运动服,销售时标价为每件100元,若按七折销售则可获利40%.为尽快减少库存,现该商场决定对这批运动服开展降价促销活动,每件在七折的基础上再降价x元后,现在每天可销售(4x+10)件.(1)运动服的进价是每件______元;(2)促销期间,每天若要获得500元的利润,则x的值为多少?
参考答案一、选择题(每小题3分,共30分)1、B【解析】
由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.【详解】A.,故不是直角三角形,故本选项错误;
B.故是直角三角形,故本选项正确;C.,故不是直角三角形,故本选项错误;
D.a=3-1=2,b=4-1=3,c=5-1=4,由于,故不是直角三角形,故本选项错误.故选:B【点睛】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.2、A【解析】
由图象可知kx+b=0的解为x=−1,所以kx+b>0的解集也可观察出来.【详解】从图象得知一次函数y=kx+b(k,b是常数,k≠0)的图象经过点(−1,0),并且函数值y随x的增大而增大,因而则不等式kx+b>0的解集是x>−1.故选:A.【点睛】本题考查了一次函数与不等式(组)的关系及数形结合思想的应用.解决此类问题关键是仔细观察图形,注意几个关键点(交点、原点等),做到数形结合.3、B【解析】分析:注意分析y随x的变化而变化的趋势,而不一定要通过求解析式来解决.详解:当E在AB上运动时,△BCE的面积不断增大;当E在AD上运动时,BC一定,高为AB不变,此时面积不变;当E在DC上运动时,△BCE的面积不断减小.∴当x=7时,点E应运动到高不再变化时,即点D处.故选B.点睛:本题考查动点问题的函数图象问题,有一定难度,注意要仔细分析.关键是根据所给函数图象和点的运动轨迹判断出x=3到7时点E所在的位置.4、A【解析】
令y=0,求出x的值即可【详解】解:∵令y=0,则x=2,∴直线y=x-2与x轴的交点坐标为(2,0).故选:A.【点睛】本题考查的是一次函数图象上点的坐标特点,熟知x轴上点的坐标特点是解答此题的关键.5、A【解析】
根据正方形的判定,矩形的判定、菱形的判定和平行四边形的判定判断即可【详解】①对角线相等且互相垂直平分的四边形是正方形,少“垂直”,故错;②四边形的三个角是直角,由内角和为360°知,第四个角必是直角,正确;③平行四边形对角线互相平分,加上对角线互相垂直,是菱形,故正确;④有可能是等腰梯形,故错,正确的是②③【点睛】此题考查正方形的判定,矩形的判定、菱形的判定和平行四边形的判定,解题关键在于掌握判定定理6、D【解析】
根据函数图象交点左侧直线y=ax+b图象在直线:y=mx+n图象的下面,即可得出不等式ax+b<mx+n的解集.【详解】解:∵直线l1:y=ax+b,与直线l2:y=mx+n交于点A(1,3),
∴不等式ax+b<mx+n的解集是:x<1.
故选:D.【点睛】本题考查一次函数与不等式,利用数形结合得出不等式的解集是解题的关键.7、C【解析】
理解题意,由反射角与入射角的定义作出图形,观察出反弹6次为一个循环的规律,解答即可.【详解】如图,经过6次反弹后动点回到出发点(0,3),
∵2018÷6=336…2,
∴当点P第2018次碰到矩形的边时为第336个循环组的第2次反弹,
点P的坐标为(7,4).
故选C.【点睛】本题考查了平面直角坐标系中点的坐标规律,首先作图,然后观察出每6次反弹为一个循环,据此解答即可.8、B【解析】
由图②知,运动2秒时,,距离最长,再根据运动速度乘以时间求得路程,可得点P的位置,根据线段的和差,可得CP的长,最后由即可求得答案.【详解】由图②知,运动2秒时,,的值最大,此时,点P与点B重合,则,∵四边形为正方形,则,∴,由题可得:点P运动3秒时,则P点运动了6cm,
此时,点P在BC上,如图:
∴cm,∴点P为BC的中点,∵PQ∥BD,∴点Q为DC的中点,∴.故选:B.【点睛】本题考查了动点问题的函数图象以及平行线的性质、正方形的性质、三角形中位线定理,由图②知,运动2秒时,,求得正方形的边长是解题的关键.9、D【解析】
写出前几个图形中的直角三角形的个数,并找出规律,当n为奇数时,三角形的个数是2(n+1),当n为偶数时,三角形的个数是2n,根据此规律求解即可.【详解】第1,2个图形各有4个直角三角形;第3,4个图形各有8个直角三角形;第5,6个图形各有12个直角三角形……第2017,2018个图形各有4036个直角三角形,故选:D.【点睛】本题主要考查了中点四边形、图形的变化,根据前几个图形的三角形的个数,观察出与序号的关系式解题的关键.10、B【解析】
直接利用二次根式有意义的条件进而分析得出答案.【详解】依题意得:,解得:.故选:.【点睛】此题考查了二次根式的意义和性质.概念:式子叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.二、填空题(每小题3分,共24分)11、=【解析】
利用矩形的性质可得△ABD的面积=△CDB的面积,△MBK的面积=△QKB的面积,△PKD的面积=△NDK的面积,进而求出答案.【详解】解:∵四边形ABCD是矩形,四边形MBQK是矩形,四边形PKND是矩形,∴△ABD的面积=△CDB的面积,△MBK的面积=△QKB的面积,△PKD的面积=△NDK的面积,∴△ABD的面积﹣△MBK的面积﹣△PKD的面积=△CDB的面积﹣△QKB的面积=△NDK的面积,∴S1=S1.故答案为:=.【点睛】本题考查了矩形的性质,熟练掌握矩形的性质定理是解题关键.12、1【解析】
依据直线y=kx+b与y=2x+1平行,且经过点(-3,4),即可得到直线解析式为y=2x+10,进而得到该直线可以看作由函数y=2x+1的图象向上平移1个单位长度得到的.【详解】∵直线y=kx+b与y=2x+1平行,∴k=2,又∵直线经过点(-3,4),∴4=-3×2+b,解得b=10,∴该直线解析式为y=2x+10,∴可以看作由函数y=2x+1的图象向上平移1个单位长度得到的.故答案为:1.【点睛】本题主要考查了一次函数图象与几何变换,解决问题的关键是利用待定系数法求得直线解析式.13、【解析】
根据菱形的性质可知,,然后利用即可得出答案.【详解】∵四边形是菱形,∴,∵,,∴∴故答案为:.【点睛】本题主要考查菱形的性质及向量的运算,掌握菱形的性质及向量的运算法则是解题的关键.14、1.【解析】
根据轴对称图形与中心对称图形的概念求解.【详解】A.是轴对称图形,也是中心对称图形。故正确B.不是轴对称图形,也不是中心对称图形。故错误;C.不是轴对称图形,不是中心对称图形。故错误;D.是轴对称图形,不是中心对称图形。故错误。故答案为:1【点睛】此题考查中心对称图形,轴对称图形,难度不大15、1【解析】
根据题意和函数图象中的数据可以求得当x>18时对应的函数解析式,根据102>54可知,小丽家用水量超过18立方米,从而可以解答本题.【详解】解:设当x>18时的函数解析式为y=kx+b,图象过(18,54),(28,94)∴,得即当x>18时的函数解析式为:y=4x-18,
∵102>54,
∴小丽家用水量超过18立方米,∴当y=102时,102=4x-18,得x=1,
故答案为:1.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.16、【解析】
本题考查了实数的性质,在一个数的前面加上负号就是这个数的相反数.【详解】解:+1的相反数是﹣﹣1,故答案为:﹣﹣1.【点睛】本题考查了实数的性质,在一个数的前面加上负号就是这个数的相反数.17、【解析】
连接BF,由等边三角形的性质可得三角形全等的条件,从而可证△BCF≌△ACE,推出∠CBF=∠CAE=30°,再由垂线段最短可知当DF⊥BF时,DF值最小,利用含30°的直角三角形的性质定理可求DF的值.【详解】解:如图,连接BF∵△ABC为等边三角形,AD⊥BC,AB=6,
∴BC=AC=AB=6,BD=DC=3,∠BAC=∠ACB=60°,∠CAE=30°
∵△CEF为等边三角形
∴CF=CE,∠FCE=60°
∴∠FCE=∠ACB
∴∠BCF=∠ACE
∴在△BCF和△ACE中
BC=AC,∠BCF=∠ACE,CF=CE
∴△BCF≌△ACE(SAS)
∴∠CBF=∠CAE=30°,AE=BF
∴当DF⊥BF时,DF值最小
此时∠BFD=90°,∠CBF=30°,BD=3
∴DF=BD=
故答案为:.【点睛】本题考查了构造全等三角形来求线段最小值,同时也考查了30°所对直角边等于斜边的一半及垂线段最短等几何知识点,具有较强的综合性.18、1【解析】
先根据平移的性质可得,,,再根据矩形的判定与性质可得,从而可得,然后根据平行线四边形的判定可得四边形ABED是平行四边形,最后根据平行四边形的面积公式即可得.【详解】由平移的性质得,,四边形ACFD是矩形四边形ABED是平行四边形(一组对边平行且相等的四边形是平行四边形)则四边形ABED的面积为故答案为:1.【点睛】本题考查了平移的性质、平行四边形的判定、矩形的判定与性质等知识点,掌握平移的性质是解题关键.三、解答题(共66分)19、(1)90,19;(2)B,24;(3)1320户【解析】
(1)根据图表数据与百分率对应求得总人数,从而求得a值;(2)结合图表及数据可求得中位数和E所在的圆心角度数;(3)根据样本估计总体.【详解】(1)∵A组共有27户,对应的百分率为30%∴总户数为:(户)∴(户);(2)∵共有90户,中位数为第45,46两个数据的平均数,27+19=46,∴中位数位于B组;E对应的圆心角度数为:(3)旅游消费8000元以上的家庭为C、D、E组,大约有:2700×=1320(户).【点睛】本题考查统计的相关知识,解题关键在于梳理统计图当中的条件信息.20、经过1或5秒钟,可使得四边形APQC的面积是31平方厘米;经过3秒时,S取得最小值27平方厘米.【解析】
(1)设经过x秒钟,可使得四边形APQC的面积是31平方厘米,根据面积为31列出方程,求出方程的解即可得到结果;(2)根据题意列出S关于x的函数关系式,利用函数的性质来求最值.【详解】设经过x秒钟,可使得四边形APQC的面积是31平方厘米,根据题意得:,即,整理得,解得:,.答:经过1或5秒钟,可使得四边形APQC的面积是31平方厘米;依题意得,,即,当,即时,.答:经过3秒时,S取得最小值27平方厘米.【点睛】此题考查了一元二次方程的应用、二次函数的性质,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.21、(1)k=,b=;(2)【解析】
(1)根据待定系数法可求出解析式,得到k、b的值;(2)根据函数解析式与坐标轴的交点,可利用面积公式求出四边形的面积.【详解】(1)M为l1与l2的交点令M(1,y),代入y=2x+4中,解得y=2,即M(1,2),将M(1,2)代入y=kx+b,得k+b=2①将A(-2,0)代入y=kx+b,得-2k+b=0②由①②解得k=,b=(2)解:由(1)知l2:y=x+,当x=0时y=即OB=∴S△AOB=
OA·OB=×2×
=在y=-2x+4令y=0,得N(2,0)又因为A(-2,0),故AN=4所以S△AMN=×AN×ym=×4×2=4故SMNOB=S△AMN-S△AOB=4-=.【点睛】考查了两条直线的相交问题,以及一次函数图象的点的特征,要熟练掌握.22、(1)第一次每本的进货价是1元;(2):每本售价为1.2元.【解析】
(1)设第一次每本的进货价是x元,根据提价之后用6000元购进数量比第一次少了1000本,列方程求解;(2)设售价为y元,根据获利不低于4200元,列不等式求解【详解】解:(1)设第一次每本的进货价是x元,由题意得:=1000,解得:x=1.答:第一次每本的进货价是1元;(2)设售价为y元,由题意得,(6000+2000)y﹣12000≥4200,解得:y≥1.2.答:每本售价为1.2元.考点:分式方程的应用;一元一次不等式的应用23、(1)-4;(2)为且.【解析】
(1)根据二次根式的性质,整数指数幂的性质化简计算即可.(2)利用勾股定理的逆定理解决问题即可.【详解】(1)解:原式=(2)解:,;∴为且【点睛】本题考查勾股定理的逆定理,零指数幂,二次根式的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.24、(1)捐款人数共有78人;(2)众数为25(元);中位数为25(元),(3)全校共捐款34200元【解析】
(1)各长方形的高度之比为3:4:5:8:6,就是已知捐款人数的比是3:4:5:8:6,求一共调查多少人可以根据捐款25元和30元的学生一共42人.就可以求出调查的总人数;
(2)众数就是出现次数最多的数,中位数就是按大小顺序排列处于中间位置的两个数的平均数;
(3)估计全校学生捐款数,就可以先求出这些人的学生的平均捐款数,可以近似等于全校学生的平均捐款数.【详解】解:(1)设捐款30元的有6x人,则8x+6x=42,得x=3。则捐款人数共有3x+4x+5x+8x+6x=78(人);(2)由图象可知:众数为25(元);由于本组数据的个数为78,按大小顺序排列处于中间位置的两个数都是25(元),故中位数为25(元);(3)全校共捐款(9×10+12×15+15×20+24×25+18×30)×=34200(元).故答案为:(1)捐款人数共
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 财务个人月工作计划
- 甜品店创业计划书完整版
- 老高考旧教材适用2025版高考英语二轮复习专题二七选五题型针对练四-段尾句类
- 贵州省2025届高三数学上学期3+3+3高考备考诊断性联考一理试题含解析
- 春季幼儿园安全教育计划
- 民营公司企业的融资计划书
- 《时间管理与执行力》课件
- 2024年骨科护理工作计划表
- 小学英语第一学期教学工作计划
- 8中学某年心理健康教育工作计划
- FTA故障树分析课件
- 2024年高考全国乙卷生物真题(原卷版)
- 无机材料与功能化学
- 110kV变电站及110kV输电线路运维投标技术方案(第一部分)
- 消防设施安全检查表
- 餐厅用电安全承诺书
- 家庭教育指导能力提升研究课题
- 小学六年级数学上册应用题100道(全)-及答案
- 学生辍学劝返记录表
- 2022-2023学年湖南省衡阳市常宁市胜桥中学高一物理上学期期末试卷含解析
- 2022年河北省普通高中学业水平合格性考试语文试题(解析版)
评论
0/150
提交评论