版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024年江苏省仪征市新集初级中学八年级数学第二学期期末综合测试模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.若,则不等式的解集在数轴上表示为()A. B.C. D.2.下列方程没有实数根的是()A.x3+2=0 B.x2+2x+2=0C.=x﹣1 D.=03.目前我国已建立了比较完善的经济困难学生资助体系,某校去年上半年发放给每个经济困难学生389元,今年上半年发放了438元.设每半年发放的资助金额的平均增长率为x,则下面列出的方程中正确的是()A.438(1+x)2=389 B.389(1+x)2=438C.389(1+2x)=438 D.438(1+2x)=3894.如图,函数与的图象交于点,那么关于x,y的方程组的解是A. B. C. D.5.平行四边形所具有的性质是()A.对角线相等 B.邻边互相垂直C.每条对角线平分一组对角 D.两组对边分别相等6.下列多项式中,能用完全平方公式分解因式的是()A. B. C. D.7.下列各曲线中表示y是x的函数的是()A. B. C. D.8.如图,点A坐标为(3,0),B是y轴正半轴上一点,AB=5,则点B的坐标为()A.(4,0) B.(0,4) C.(0,5) D.(0,)9.若直线y=kx+b经过一、二、四象限,则直线y=bx﹣k的图象只能是图中的()A. B. C. D.10.下列二次根式是最简二次根式的是A. B. C. D.二、填空题(每小题3分,共24分)11.如图,在平行四边形ABCD中,∠ABC的平分线BF交AD于点F,FE∥AB.若AB=5,BF=6,则四边形ABEF的面积为________12.若函数是正比例函数,则常数m的值是。13.数据1,4,5,6,4,5,4的众数是___.14.如图,四边形ABCD中,AB∥CD,要使四边形ABCD为平行四边形,则可添加的条件为_______________________________.(填一个即可)
15.小明统计了家里3月份的电话通话清单,按通话时间画出频数分布直方图(如图所示),则通话时间不足10分钟的通话次数的频率是_____.16.如图,在平行四边形中,已知,,,点在边上,若以为顶点的三角形是等腰三角形,则的长是_____.17.已知,如图,△ABC中,E为AB的中点,DC∥AB,且DC=AB,请对△ABC添加一个条件:_____,使得四边形BCDE成为菱形.18.计算:+×=________.三、解答题(共66分)19.(10分)一水果经销商购进了A,B两种水果各10箱,分配给他的甲、乙两个零售店(分别简称甲店、乙店)销售,预计每箱水果的盈利情况如下表:A种水果/箱B种水果/箱甲店11元17元乙店9元13元(1)如果甲、乙两店各配货10箱,其中A种水果两店各5箱,B种水果两店各5箱,请你计算出经销商能盈利多少元?(2)在甲、乙两店各配货10箱(按整箱配送),且保证乙店盈利不小于100元的条件下,请你设计出使水果经销商盈利最大的配货方案,并求出最大盈利为多少?20.(6分)如图,平面直角坐标系中,矩形的对角线,.(1)求点的坐标;(2)把矩形沿直线对折,使点落在点处,折痕分别与、、相交于点、、,求直线的解析式;(3)若点在直线上,平面内是否存在点,使以、、、为顶点的四边形是菱形?若存在,请直接写出点的坐标;若不存在,请说明理由.21.(6分)如图,图1中ΔABC是等边三角形,DE是中位线,F是线段BC延长线上一点,且CF=AE,连接BE,EF.图1图2(1)求证:BE=EF;(2)若将DE从中位线的位置向上平移,使点D、E分别在线段AB、AC上(点E与点A不重合),其他条件不变,如图2,则(1)题中的结论是否成立?若成立,请证明;若不成立.请说明理由.22.(8分)“端午节小长假”期间,小明一家乘坐高铁前往某市旅游,计划第二天租用新能源汽车自驾出游.根据以上信息,解答下列问题:(1)甲公司每小时的租费是元;(2)设租车时间为x小时,租用甲公司的车所需费用为y1元,租用乙公司的车所需费用为y2元,分别求出y1,y2关于x的函数解析式;(3)请你帮助小明计算并分析选择哪个出游方案合算.23.(8分)如图,等腰直角三角形AEF的顶点E在等腰直角三角形ABC的边BC上.AB的延长线交EF于D点,其中∠AEF=∠ABC=90°.(1)求证:(2)若E为BC的中点,求的值.24.(8分)每年的6月5日为世界环保日,为了提倡低碳环保,某公司决定购买10台节省能源的新设备,现有A、B两种型号的设备可供选购,A、B两种型号的设备每台的价格分别为12万元和10万元(1)该公司经预算决定购买节省能源的新设备的资金不超过110万元,则A型设备最多购买多少台?(2)已知A型设备的产量为240吨/月,B型设备的产量为180吨/月,若每月要求总产量不低于2040吨,则A型设备至少要购买多少台?25.(10分)解下列方程(1);(2)26.(10分)计算:16﹣(π﹣2019)0+2﹣1.
参考答案一、选择题(每小题3分,共30分)1、C【解析】
先根据非负性求出a,b的值,再求出不等式的解集即可.【详解】根据题意,可知,,解得,,∴则不等式的解集为.在数轴上表示为:故选C.【点睛】此题只要不等式的求解,解题的关键是熟知非负性的应用及不等式的求解.2、B【解析】
根据立方根的定义即可判断A;根据根的判别式即可判断B;求出方程x2-3=(x-1)2的解,即可判断C;求出x-2=0的解,即可判断D.【详解】A、x3+2=0,x3=﹣2,x=﹣,即此方程有实数根,故本选项不符合题意;B、x2+2x+2=0,△=22﹣4×1×2=﹣4<0,所以此方程无实数根,故本选项符合题意;C、=x﹣1,两边平方得:x2﹣3=(x﹣1)2,解得:x=2,经检验x=2是原方程的解,即原方程有实数根,故本选项不符合题意;D、=0,去分母得:x﹣2=0,解得:x=2,经检验x=2是原方程的解,即原方程有实数根,故本选项不符合题意;故选B.【点睛】本题考查了解无理方程、解分式方程、解一元二次方程、根的判别式等知识点,能求出每个方程的解是解此题的关键.3、B【解析】
解:因为每半年发放的资助金额的平均增长率为x,去年上半年发放给每个经济困难学生389元,去年下半年发放给每个经济困难学生389(1+x)元,则今年上半年发放给每个经济困难学生389(1+x)(1+x)=389(1+x)2元.据此,由题设今年上半年发放了1元,列出方程:389(1+x)2=1.故选B.4、A【解析】
利用方程组的解就是两个相应的一次函数图象的交点坐标进行判断.【详解】解:根据题意可得方程组的解是.故选:A.【点睛】本题考查了一次函数与二元一次方程组:方程组的解就是使方程组中两个方程同时成立的一对未知数的值,而这一对未知数的值也同时满足两个相应的一次函数式,因此方程组的解就是两个相应的一次函数图象的交点坐标.5、D【解析】
根据平行四边形的性质:平行四边形的对角相等,对角线互相平分,对边平行且相等,继而即可得出答案.【详解】平行四边形的对角相等,对角线互相平分,对边平行且相等.故选D.【点睛】此题考查平行四边形的性质,解题关键在于掌握其性质.6、C【解析】
对下列各式进行因式分解,然后判断利用完全平方公式分解即可.【详解】解:A、,不能用完全平方公式分解因式,故A选项错误;B、,不能用完全平方公式分解因式,故B选项错误;C、,能用完全平方公式分解,故C选项正确;D、不能用完全平方公式分解因式,故D选项错误;故选:C.【点睛】本题考查了因式分解,熟练掌握因式分解的公式法是解本题的关键.7、D【解析】根据函数的意义可知:对于自变量x的任何值,y都有唯一的值与之相对应,故D正确.故选D.8、B【解析】分析:根据勾股定理解答本题即可.详解:因为点A坐标为(3,0),B是y轴正半轴上一点,AB=5,
所以OB==4,
所以点B的坐标为(0,4),
故选B.点睛:本题考查了两点之间的距离,解本题的关键是根据勾股定理解答.9、B【解析】试题分析:∵一次函数y=kx+b的图象经过一、二、四象限∴k<0,b>0∴直线y=bx-k经过一、二、三象限考点:一次函数的性质10、B【解析】
化简得到结果,即可作出判断.【详解】A.被开方数含分母,故错误;B.正确;C.被开方数含分母,故错误;D.=,故错误;故选:B.【点睛】此题考查最简二次根式,解题关键在于检查最简二次根式的两个条件是否同时满足二、填空题(每小题3分,共24分)11、24【解析】
首先证明四边形ABEF是菱形,由勾股定理求出OA,得出AE的长,即可解决问题.【详解】连接AE,∵四边形ABCD为平行四边形∴AD∥BC,AD=BC∵BF为∠ABE的平分线,∴∠FBE=∠AFB,∴四边形ABEF为平行四边形∵AB=AF,∴根据勾股定理,即可得到AE=2=8.∴四边形ABEF的面积=×AE×BF=24.【点睛】本题考查了菱形的性质和判定,平行四边形的性质和判定,勾股定理,等腰三角形的性质,平行线的性质等知识;证明四边形ABEF是菱形是解决问题的关键.12、-3【解析】根据函数是正比例函数知x的幂是一次得,m=±3,m=3不符合题意,舍去得m=-3.13、1【解析】
众数是出现次数最多的数,据此求解即可.【详解】解:数据1出现了3次,最多,所以众数为1,故答案为:1.【点睛】此题考查了众数的知识.众数是这组数据中出现次数最多的数.14、AD∥BC(答案不唯一)【解析】
根据两组对边分别平行的四边形是平行四边形可得添加的条件为.【详解】解:四边形ABCD中,,要使四边形ABCD为平行四边形,则可添加的条件为,故答案为.【点睛】此题主要考查了平行四边形的判定,关键是掌握两组对边分别平行的四边形是平行四边形.15、0.7【解析】
用通话时间不足10分钟的通话次数除以通话的总次数即可得.【详解】由图可知:小明家3月份通话总次数为20+15+10+5=50(次);其中通话不足10分钟的次数为20+15=35(次),∴通话时间不足10分钟的通话次数的频率是35÷50=0.7.故答案为0.7.16、2或或【解析】
分AB=BP,AB=AP,BP=AP三种情况进行讨论,即可算出BP的长度有三个.【详解】解:根据以为顶点的三角形是等腰三角形,可分三种情况①若AB=BP∵AB=2∴BP=2②若AB=AP过A点作AE⊥BC交BC于E,∵AB=AP,AE⊥BC∴BE=EP在Rt△ABE中∵∴AE=BE根据勾股定理AE2+BE2=AB2即2BE2=4解得BE=∴BP=③若BP=AP,则过P点作PF⊥AB∵AP=BP,PF⊥AB∴BF=AB=1在Rt△BFP中∵∴PF=BF=1根据勾股定理BP2=BF2+PF2即BP2=1+1=2,解得BP=∵2,,都小于3故BP=2或BP=或BP=.【点睛】本题主要考查了等腰三角形的性质和判定以及勾股定理,能利用分类讨论思想分三类情况进行讨论是解决本题的关键.BC=3在本题中的作用是BP的长度不能超过3,超过3的答案就要排除.17、AB=2BC.【解析】
先由已知条件得出CD=BE,证出四边形BCDE是平行四边形,再证出BE=BC,根据邻边相等的平行四边形是菱形可得四边形BCDE是菱形.【详解】解:添加一个条件:AB=2BC,可使得四边形BCDE成为菱形.理由如下:∵DC=AB,E为AB的中点,∴CD=BE=AE.又∵DC∥AB,∴四边形BCDE是平行四边形,∵AB=2BC,∴BE=BC,∴四边形BCDE是菱形.故答案为:AB=2BC.【点睛】本题考查了菱形的判定,平行四边形的判定;熟记平行四边形和菱形的判定方法是解决问题的关键.18、3【解析】
先根据二次根式的乘法法则运算,然后化简后合并即可.【详解】解:原式=2+=3.故答案为:3.【点睛】本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.三、解答题(共66分)19、(1)250;(2)甲店配A种水果3箱,B种水果7箱.乙店配A种水果7箱,B种水果3箱.最大盈利:254元.【解析】试题分析:(1)经销商能盈利=水果箱数×每箱水果的盈利;(2)设甲店配A种水果x箱,分别表示出配给乙店的A水果,B水果的箱数,根据盈利不小于110元,列不等式求解,进一步利用经销商盈利=A种水果甲店盈利×x+B种水果甲店盈利×(10﹣x)+A种水果乙店盈利×(10﹣x)+B种水果乙店盈利×x;列出函数解析式利用函数性质求得答案即可.解:(1)经销商能盈利=5×11+5×17+5×9+5×13=5×50=250;(2)设甲店配A种水果x箱,则甲店配B种水果(10﹣x)箱,乙店配A种水果(10﹣x)箱,乙店配B种水果10﹣(10﹣x)=x箱.∵9×(10﹣x)+13x≥100,∴x≥2,经销商盈利为w=11x+17•(10﹣x)+9•(10﹣x)+13x=﹣2x+1.∵﹣2<0,∴w随x增大而减小,∴当x=3时,w值最大.甲店配A种水果3箱,B种水果7箱.乙店配A种水果7箱,B种水果3箱.最大盈利:﹣2×3+1=254(元).20、(1);(2);(3)存在符合条件的点共有4个,分别为【解析】分析:(1)利用三角函数求得OA以及OC的长度,则B的坐标即可得到;(2)分别求出D点和E点坐标,即可求得DE的解析式;(3)分当FM是菱形的边和当OF是对角线两种情况进行讨论.利用三角函数即可求得N的坐标.详解:(1)在直角△OAC中,tan∠ACO=,∴设OA=x,则OC=3x,根据勾股定理得:(3x)2+(x)2=AC2,即9x2+3x2=571,解得:x=4.则C的坐标是:(12,0),B的坐标是();(2)由折叠可知,∵四边形是矩形,∴∥,∴,∴=,∴设直线的解析式为,则,解得;∴.(3)∵OF为Rt△AOC斜边上的中线,∴OF=AC=12,∵,∴tan∠EDC=∴DE与x轴夹角是10°,当FM是菱形的边时(如图1),ON∥FM,∴∠NOC=10°或120°.当∠NOC=10°时,过N作NG⊥y轴,∴NG=ON•sin30°=12×=1,OG=ON•cos30°=12×=1,此时N的坐标是(1,1);当∠NOC=120°时,与当∠NOC=10°时关于原点对称,则坐标是(-1,-1);当OF是对角线时(如图2),MN关于OF对称,∵F的坐标是(1,1),∴∠FOD=∠NOF=30°,在直角△ONH中,OH=OF=1,ON=.作NL⊥y轴于点L.在直角△ONL中,∠NOL=30°,∴NL=ON=,OL=ON•cos30°=×=1.此时N的坐标是(,1).当DE与y轴的交点时M,这个时候N在第四象限,此时点N的坐标为:(1,-1).则N的坐标是:(1,-1)或(1,1)或(-1,-1)或(2,1).点睛:此题属于一次函数综合题,涉及的知识有:锐角三角函数定义,勾股定理,以及菱形的性质,本题对于N的位置的讨论是解第三问的关键.21、(1)证明见解析;(2)结论仍然成立;(3)【解析】
(1)利用等边三角形的性质以及三线合一证明得出结论;(2)由中位线的性质、平行线的性质,等边三角形的性质以及三角形全等的判定与性质证明【详解】(1)证明:∵ΔABC是等边三角形,∴∠ABC=∠ACB=,AB=BC=AC∵DE是中位线,∴E是AC的中点,∴BE平分∠ABC,AE=EC∴∠EBC=∠ABC=∵AE=CF,∴CE=CF,∴∠CEF=∠F∵∠CEF+∠F=∠ACB=,∴∠F=,∴∠EBC=∠F,∴BE=EF(2)结论仍然成立.∵DE是由中位线平移所得;∴DE//BC,∴∠ADE=∠ABC=,∠AED=∠ACB=,∴ΔADE是等边三角形,∴DE=AD=AE,∵AB=AC,∴BD=CE,∵AE=CF,∴DE=CF∵∠BDE=-∠ADE=,∠FCE=-∠ACB=,∴∠FCE=∠EDB,∴ΔBDE≌ΔECF,∴BE=EF【点睛】此题考查等边三角形的判定与性质,三角形中位线定理和全等三角形的判定与性质,解题关键在于利用三线合一证明得出结论22、(1)15;(2)y2=30x(x≥0);(3)当租车时间为小时,选择甲乙公司一样合算;当租车时间小于小时,选择乙公司合算;当租车时间大于小时,选择甲公司合算.【解析】
(1)根据函数图象中的信息解答即可;(2)根据函数图象中的信息,分别运用待定系数法,求得y1,y2关于x的函数表达式即可;(3)当y1=y2时,15x+80=30x,当y1>y2时,15x+80>30x,当y1<y2时,15x+80<30x,分求得x的取值范围即可得出方案.【详解】解:(1)由图象可得:甲公司每小时的租费是15元;故答案为:15;(2)设y1=k1x+80,把点(1,95)代入,可得95=k1+80,解得k1=15,∴y1=15x+80(x≥0);设y2=k2x,把(1,30)代入,可得30=k2,即k2=30,∴y2=30x(x≥0);(3)当y1=y2时,15x+80=30x,解得x=;当y1>y2时,15x+80>30x,解得x<;当y1<y2时,15x+80<30x,解得x>;∴当租车时间为小时,选择甲乙公司一样合算;当租车时间小于小时,选择乙公司合算;当租车时间大于小时,选择甲公司合算.【点睛】本题主要考查了一次函数的应用,解题时注意:求正比例函数y=kx,只要一对x,y的值;而求一次函数y=kx+b,则需要两组x,y的值.23、(1)见解析;(2)【解析】
(1)由△AEF、△ABC是等腰直角三角形,易证得△FAD∽△CAE,然后由相似三角形的对应边成比例,可得,又由等腰直角三角形的性质,可得AF=AE,即可证得;(2)首先设
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 西南交通大学《设计与美术专题研讨》2021-2022学年第一学期期末试卷
- 西华大学《图形创意》2021-2022学年第一学期期末试卷
- DB32-T 4622.1-2023 采供血过程风险管理 第1部分:原则与实施指南
- 西北大学《构成基础》2021-2022学年第一学期期末试卷
- 《不良事件报告修改》课件
- 再生钨行业竞争格局分析:进出口贸易、行业现状、前景研究报告(智研咨询发布)
- 医院感染暴发识别与处置考核试题
- 电商设计电子课件
- 【课件】培训体系的制度和实施
- 2024-2025学年上海市青浦区高三一模生物试卷(含答案)
- 无机材料与功能化学
- 110kV变电站及110kV输电线路运维投标技术方案(第一部分)
- 消防设施安全检查表
- 餐厅用电安全承诺书
- 家庭教育指导能力提升研究课题
- 小学六年级数学上册应用题100道(全)-及答案
- 学生辍学劝返记录表
- 2022-2023学年湖南省衡阳市常宁市胜桥中学高一物理上学期期末试卷含解析
- 2022年河北省普通高中学业水平合格性考试语文试题(解析版)
- 江苏省苏州市-七年级(上)期中英语试卷-(含答案)
- 国家职业技术技能标准 6-02-06-03 白酒酿造工 人社厅发2019107号
评论
0/150
提交评论