版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广东省珠海市斗门中学2024年八年级数学第二学期期末综合测试试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题3分,共30分)1.用配方法解方程x2﹣8x+7=0,配方后可得()A.(x﹣4)2=9 B.(x﹣4)2=23C.(x﹣4)2=16 D.(x+4)2=92.如图,把两块全等的的直角三角板、重叠在一起,,中点为,斜边中点为,固定不动,然后把围绕下面哪个点旋转一定角度可以使得旋转后的三角形与原三角形正好合成一个矩形(三角板厚度不计)()A.顶点 B.顶点 C.中点 D.中点3.直线y=2x﹣7不经过()A.第一象限 B.第二象限 C.第三象限 D.第四象限4.若分式的值为0,则的值是()A. B. C.0 D.35.点P(1,a),Q(﹣2,b)是一次函数y=kx+1(k<0)图象上两点,则a与b的大小关系是()A.a>b B.a=b C.a<b D.不能确定6.等于()A.±4 B.4 C.﹣4 D.±27.已知一次函数y=kx+2,y随x的增大而增大,则该函数的图象一定经过()A.第一、二、三象限B.第一、二、四象限C.第一、三、四象限D.第二、三、四象限8.如图,在正方形ABCD中,点F为CD上一点,BF与AC交于点E.若∠CBF=20°,则∠DEF的度数是()A.25° B.40° C.45° D.50°9.下列分解因式正确的是()A.-a+a3=-a(1+a2) B.2a-4b+2=2(a-2b)C.a2-4=(a-2)2 D.a2-2a+1=(a-1)210.某公司承担了制作600个广州亚运会道路交通指引标志的任务,原计划x天完成,实际平均每天多制作了10个,因此提前5天完成任务,根据题意,下列方程正确的是()A. B.C. D.二、填空题(每小题3分,共24分)11.已知:如图,正方形ABCD中,对角线AC和BD相交于点O.E、F分别是边AD、CD上的点,若AE=4cm,CF=3cm,且OE⊥OF,则EF的长为_____cm.12.如图,点A是反比例函数y=kx图象上的一个动点,过点A作AB⊥x轴,AC⊥y轴,垂足点分别为B、C,矩形ABOC的面积为4,则k=________13.如图,在平面直角坐标系xOy中,平行四边形ABCD的四个顶点A,B,C,D是整点(横、纵坐标都是整数),则平行四边形ABCD的面积是_____14.如图,正方形ABCD中,对角线AC、BD相交于点O,DE平分∠ADO交AC于点E,把△ADE沿AD翻折,得到△ADE′,点F是DE的中点,连接AF、BF、E′F.若AE=22.则四边形ABFE′的面积是_____.15.计算:(1+)2×(1﹣)2=_____.16.如图.在平面直角坐标系中,函数(其中,)的图象经过的顶点.函数(其中)的图象经过顶点,轴,的面积为.则的值为____.17.某校九年级甲、乙两班举行电脑汉字输入比赛,两个班能参加比赛的学生每分钟输入汉字的个数,经统计和计算后结果如下表:有一位同学根据上面表格得出如下结论:①甲、乙两班学生的平均水平相同;②乙班优秀人数比甲班优秀人数多(每分钟输入汉字达150个以上为优秀);③甲班学生比赛成绩的波动比乙班学生比赛成绩的波动大.上述结论正确的是_______(填序号).18.如图1,平行四边形纸片的面积为120,,.沿两对角线将四边形剪成甲、乙、丙、丁四个三角形纸片.若将甲、丙合并(、重合)形成对称图形戊,如图2所示,则图形戊的两条对角线长度之和是.三、解答题(共66分)19.(10分)如图,在平面直角坐标系中,为坐标原点,矩形的顶点、,将矩形的一个角沿直线折叠,使得点落在对角线上的点处,折痕与轴交于点.(1)线段的长度为__________;(2)求直线所对应的函数解析式;(3)若点在线段上,在线段上是否存在点,使四边形是平行四边形?若存在,请求出点的坐标;若不存在,请说明理由.20.(6分)已知:P是正方形ABCD对角线BD上一点,PE⊥DC,PF⊥BC,E、F分别为垂足.求证:AP=EF.21.(6分)如图所示,△ABC中,D是BC边上一点,E是AD的中点,过点A作BC的平行线交CE的延长线于F,且AF=BD,连接BF.(1)求证:D是BC的中点;(2)若AB=AC,试判断四边形AFBD的形状,并证明你的结论.22.(8分)甲、乙两班各推选10名同学进行投篮比赛,按照比赛规则,每人各投了10个球,两个班选手的进球数统计如表,请根据表中数据解答下列问题进球数/个1098765甲111403乙012502(1)分别写出甲、乙两班选手进球数的平均数、中位数与众数;(2)如果要从这两个班中选出一个班级参加学校的投篮比赛,争取夺得总进球团体的第一名,你认为应该选择哪个班?如果要争取个人进球数进入学校前三名,你认为应该选择哪个班?23.(8分)如图,A,B是直线y=x+4与坐标轴的交点,直线y=-2x+b过点B,与x轴交于点C.(1)求A,B,C三点的坐标;(2)点D是折线A—B—C上一动点.①当点D是AB的中点时,在x轴上找一点E,使ED+EB的和最小,用直尺和圆规画出点E的位置(保留作图痕迹,不要求写作法和证明),并求E点的坐标.②是否存在点D,使△ACD为直角三角形,若存在,直接写出D点的坐标;若不存在,请说明理由24.(8分)在数学拓展课上,老师让同学们探讨特殊四边形的做法:如图,先作线段,作射线(为锐角),过作射线平行于,再作和的平分线分别交和于点和,连接,则四边形为菱形;(1)你认为该作法正确吗?请说明理由.(2)若,并且四边形的面积为,在上取一点,使得.请问图中存在这样的点吗?若存在,则求出的长;若不存在,请说明理由.25.(10分)如图,在矩形ABCD中,AB=6cm,BC=12cm,点P从点A沿边AB向点B以1cm/s的速度移动;同时,点Q从点B沿边BC向点C以2cm/s的速度移动.(1)问几秒后△PBQ的面积等于8cm2?(2)是否存在这样的时刻,使=8cm2,试说明理由.26.(10分)化简并求值:其中.
参考答案一、选择题(每小题3分,共30分)1、A【解析】
首先将常数项移到等号的右侧,将等号左右两边同时加上一次项系数一半的平方,即可将等号左边的代数式写成完全平方形式.【详解】解:x2﹣8x+7=0,x2﹣8x=﹣7,x2﹣8x+16=﹣7+16,(x﹣4)2=9,故选:A.【点睛】本题考查了解一元二次方程--配方法.配方法的一般步骤:
(1)把常数项移到等号的右边;
(2)把二次项的系数化为1;
(3)等式两边同时加上一次项系数一半的平方.
选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.2、D【解析】
运用旋转的知识逐项排除,即可完成解答.【详解】A,绕顶点A旋转可以得到等腰三角形,故A错误;B,绕顶点B旋转得不到矩形,故B错误;C,绕中点P旋转可以得到等腰三角形,故C错误;D,绕中点Q旋转可以得到等腰三角形,故D正确;因此答案为D.【点睛】本题主要考查了旋转,解题的关键在于具有丰富的空间想象能力.3、B【解析】
根据题目中的函数解析式和一次函数的性质可以解答本题.【详解】解:∵直线y=2x﹣1,k=2>0,b=﹣1,∴该直线经过第一、三、四象限,不经过第二象限,故选:B.【点睛】本题考查一次函数的性质,解答本题的关键是明确题意,利用一次函数的性质解答.4、D【解析】
根据分式为零的条件,即可完成解答.【详解】解:由分式为零的条件得,x-3=0,x+2≠0,解得x=3;故答案为D.【点睛】本题考查了分式为0的条件,即分子为零,分母不为0.5、C【解析】
先把点P(1,a),Q(-2,b)分别代入一次函数解析式得到k+1=a,-2k+1=b,然后根据k<0得到k<-2k,则即可得到a、b的大小关系.【详解】把点P(1,a),Q(-2,b)分别代入y=kx+1得k+1=a,-2k+1=b,∵k<0,∴a<b.故选C.【点睛】本题考查了一次函数图象上点的坐标特征:一次函数y=kx+b(k≠0)的图象上的点满足其解析式.6、B【解析】
根据=|a|可以得出的答案.【详解】=|﹣4|=4,故选:B.【点睛】本题考查平方根的性质,熟记平方根的性质是解题的关键.7、A【解析】试题分析:y随x的增大而增大,则k>0,则函数y=kx+1一定经过一、二、三象限.考点:一次函数的性质.8、D【解析】
首先根据题意证明,则可得,根据∠CBF=20°可计算的的度数,再依据进而计算∠DEF的度数.【详解】解:四边形ABCD为正方形BC=DCEC=EC在直角三角形BCF中,∠DEF=50°故选D.【点睛】本题主要考查正方形的性质,是基本知识点,应当熟练掌握.9、D【解析】
根据因式分解的定义进行分析.【详解】A、-a+a3=-a(1-a2)=-a(1+a)(1-a),故本选项错误;B、2a-4b+2=2(a-2b+1),故本选项错误;C、a2-4=(a-2)(a+2),故本选项错误;D、a2-2a+1=(a-1)2,故本选项正确.故选D.【点睛】考核知识点:因式分解.10、A【解析】
关键描述语是:实际平均每天比原计划多制作了10个,根据等量关系列式.【详解】解:设原计划x天完成,根据题意可得:,故选:A.【点睛】此题考查分式方程的应用,涉及的公式:工作效率=工作量÷工作时间,解题时找到等量关系是列式的关键二、填空题(每小题3分,共24分)11、1【解析】试题解析:连接EF,∵OD=OC,∵OE⊥OF∴∠EOD+∠FOD=90°∵正方形ABCD∴∠COF+∠DOF=90°∴∠EOD=∠FOC而∠ODE=∠OCF=41°∴△OFC≌△OED,∴OE=OF,CF=DE=3cm,则AE=DF=4,根据勾股定理得到EF==1cm.故答案为1.12、-1【解析】试题分析:由于点A是反比例函数y=kx考点:反比例函数13、1【解析】
结合网格特点利用平行四边形的面积公式进行求解即可.【详解】由题意AD=5,平行四边形ABCD的AD边上的高为3,∴S平行四边形ABCD=5×3=1,故答案为:1.【点睛】本题考查了网格问题,平行四边形的面积,熟练掌握网格的结构特征以及平行四边形的面积公式是解题的关键.14、12+42.【解析】
连接EB、EE′,作EM⊥AB于M,EE′交AD于N.易知△AEB≌△AED≌△ADE′,先求出正方形AMEN的边长,再求出AB,根据S四边形ABFE′=S四边形AEFE′+S△AEB+S△EFB即可解决问题.【详解】连接EB、EE′,作EM⊥AB于M,EE′交AD于N,如图所示:∵四边形ABCD是正方形,∴AB=BC=CD=DA,AC⊥BD,AO=OB=OD=OC,∠DAC=∠CAB=∠DAE′=45°,在△ADE和△ABE中,AD=∴△ADE≌△ABE(SAS),∵把△ADE沿AD翻折,得到△ADE′,∴△ADE≌△ADE′≌△ABE,∴DE=DE′,AE=AE′,∴AD垂直平分EE′,∴EN=NE′,∵∠NAE=∠NEA=∠MAE=∠MEA=45°,AE=22,∴AM=EM=EN=AN=2,∵ED平分∠ADO,EN⊥DA,EO⊥DB,∴EN=EO=2,AO=2+22,∴AB=2AO=4+22,∴S△AEB=S△AED=S△ADE′=12×2×(4+22)=4+22,S△BDE=S△ADB﹣2S△AEB=12×(4+22)2﹣2×12×2×(4+22∵DF=EF,∴S△EFB=12S△BDE=12×4=∴S△DEE′=2S△AED﹣S△AEE′=2×(4+22)﹣12×(22)2=4+42,S△DFE′=12S△DEE′=12×(4+42)=∴S四边形AEFE′=2S△AED﹣S△DFE′=2×(4+22)﹣(2+22)=6+22,∴S四边形ABFE′=S四边形AEFE′+S△AEB+S△EFB=6+22+4+22+2=12+42;故答案为:12+42.【点睛】本题考查正方形的性质、翻折变换、全等三角形的性质,角平分线的性质、等腰直角三角形的性质等知识,解题的关键是添加辅助线,学会利用分割法求四边形面积,属于中考填空题中的压轴题.15、1【解析】
根据积的乘方法则及平方差公式计算即可.【详解】原式=2.=.=1.故答案为1.【点睛】本题考查积的乘方及平方差公式,熟练掌握并灵活运用是解题关键.16、-1.【解析】
根据反比例函数K的几何意义即可得到结果【详解】解:依题意得:+=解得:K=,∵反比例函数图象在第2象限,∴k=-1.故答案为-1.【点睛】本题考查了反比例函数K的几何意义,正确掌握反比例函数K的几何意义是解题的关键.17、①②③.【解析】
根据平均数、方差和中位数的意义,可知:甲乙的平均数相同,所以①甲、乙两班学生的平均水平相同.根据中位数可知乙的中位数大,所以②乙班优秀的人数比甲班优秀的人数多.根据方差数据可知,方差越大波动越大,反之越小,所以甲班学生比赛成绩的波动比乙班学生比赛成绩的波动大.
故答案为①②③.【点睛】本题考查统计知识中的中位数、平均数和方差的意义.要知道平均数和中位数反映的是数据的集中趋势,方差反映的是离散程度.18、26【解析】如图,则可得对角线EF⊥AD,且EF与平行四边形的高相等.∵平行四边形纸片ABCD的面积为120,AD=20,∴EF="120/20"=6,又BC=20,∴对角线之和为20+6=26,三、解答题(共66分)19、(1)1;(2);(3)【解析】
(1)根据勾股定理即可解决问题;
(2)设AD=x,则OD=OA=AD=12-x,根据轴对称的性质,DE=x,BE=AB=9,又OB=1,可得OE=OB-BE=1-9=6,在Rt△OED中,根据OE2+DE2=OD2,构建方程即可解决问题;
(3)过点E作EP∥BD交BC于点P,过点P作PQ∥DE交BD于点Q,则四边形DEPQ是平行四边形,再过点E作EF⊥OD于点F,想办法求出最小PE的解析式即可解决问题。【详解】解:(1)在Rt△ABC中,∵OA=12,AB=9,故答案为1.(2)如图,设,则根据轴对称的性质,,又,∴,在中,,即,则,∴,∴设直线所对应的函数表达式为:则,解得∴直线所对应的函数表达式为:.故答案为:(3)过点作交于点,过点作交于点,则四边形是平行四边形,再过点作于点,由得,即点的纵坐标为,又点在直线:上,∴,解得,由于,所以可设直线,∵在直线上∴,解得
∴直线为,令,则,解得,∴【点睛】本题考查一次函数综合题、矩形的性质、平行四边形的判定和性质、勾股定理等知识,解题的关键是熟练掌握待定系数法,学会构建一次函数解决问题,属于中考压轴题.20、见试题解析【解析】试题分析:利用正方形的关于对角线成轴对称,利用轴对称的性质可得出EF=AP.证明:如图,连接PC,∵PE⊥DC,PF⊥BC,四边形ABCD是正方形,∴∠PEC=∠PFC=∠ECF=90°,∴四边形PECF为矩形,∴PC=EF,又∵P为BD上任意一点,∴PA、PC关于BD对称,可以得出,PA=PC,所以EF=AP.21、(1)见解析;(2)若AB=AC,则四边形AFBD是矩形.理由见解析【解析】
(1)先说明∠AFE=∠DCE,再证明△AEF和△DEC全等,最后根据全等三角形的性质和等量关系即可证明;(2)由(1)可得AF平行且等于BD,即四边形AFBD是平行四边形;再利用等腰三角形三线合一,可得AD⊥BC,即∠ADB=90°,即可证明四边形AFBD是矩形.【详解】(1)证明:∵AF∥BC,∴∠AFE=∠DCE,∵点E为AD的中点,∴AE=DE,在△AEF和△DEC中,,∴△AEF≌△DEC(AAS),∴AF=CD,∵AF=BD,∴CD=BD,∴D是BC的中点;(2)解:若AB=AC,则四边形AFBD是矩形.理由如下:∵△AEF≌△DEC,∴AF=CD,∵AF=BD,∴CD=BD;∵AF∥BD,AF=BD,∴四边形AFBD是平行四边形,∵AB=AC,BD=CD,∴∠ADB=90°,∴平行四边形AFBD是矩形.【点睛】本题考查了矩形的判定、全等三角形的判定与性质、平行四边形的判定等知识点,掌握矩形的判定方法是解答本题的关键.22、(1)甲班选手进球数的平均数为7,中位为7,众数为7;乙班选手进球数的平均数为7,中位为7,众数为7;(2)要争取夺取总进球团体第一名,应选乙班;要进入学校个人前3名,应选甲班.【解析】
(1)利用平均数、中位数和众数的定义直接求出;(2)根据方差和个人发挥的最好成绩进行选择.【详解】解:(1)甲班选手进球数的平均数为7,中位为7,众数为7;乙班选手进球数的平均数为7,中位为7,众数为7;(2)甲班S12=[(10﹣7)2+(9﹣7)2+(8﹣7)2+1×(7﹣7)2+0×(6﹣7)2+3×(5﹣7)2]=2.6,乙班S22=[0×(10﹣7)2+(9﹣7)2+2×(8﹣7)2+5×(7﹣7)2+(6﹣7)2+2×(5﹣7)2]=1.1.∵甲方差>乙方差,∴要争取夺取总进球团体第一名,应选乙班.∵甲班有一位百发百中的出色选手,∴要进入学校个人前3名,应选甲班.【点睛】本题考查了平均数,中位数,方差的意义.平均数表示一组数据的平均程度.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数);方差是用来衡量一组数据波动大小的量.23、(1)A(-4,0);B(0,4);C(2,0);(2)①点E的位置见解析,E(,0);②D点的坐标为(-1,3)或(,)【解析】
(1)先利用一次函数图象上点的坐标特点求得点A、B的坐标;然后把B点坐标代入y=−2x+b求出b的值,确定此函数解析式,然后再求C点坐标;
(2)①根据轴对称—最短路径问题画出点E的位置,由待定系数法确定直线DB1的解析式为y=−3x−4,易得点E的坐标;
②分两种情况:当点D在AB上时,当点D在BC上时.当点D在AB上时,由等腰直角三角形的性质求得D点的坐标为(−1,3);当点D在BC上时,设AD交y轴于点F,证△AOF与△BOC全等,得OF=2,点F的坐标为(0,2),求得直线AD的解析式为,与y=−2x+4组成方程组,求得交点D的坐标为(,).【详解】(1)在y=x+4中,令x=0,得y=4,令y=0,得x=-4,∴A(-4,0),B(0,4)把B(0,4)代入y=-2x+b,得b=4,∴直线BC为:y=-2x+4在y=-2x+4中,令y=0,得x=2,∴C点的坐标为(2,0);(2)①如图∵点D是AB的中点∴D(-2,2)点B关于x轴的对称点B1的坐标为(0,-4),设直线DB1的解析式为,把D(-2,2),B1(0,-4)代入,得,解得k=-3,b=-4,∴该直线为:y=-3x-4,令y=0,得x=,∴E点的坐标为(,0).②存在,D点的坐标为(-1,3)或(,).当点D在AB上时,∵OA=OB=4,∴∠BAC=45°,∴△ACD是以∠ADC为直角的等腰直角三角形,∴点D的横坐标为,当x=-1时,y=x+4=3,∴D点的坐标为(-1,3);当点D在BC上时,如图,设AD交y轴于点F.∵∠FAO+∠AFO=∠CBO+∠BFD,∠AFO=∠BFD,∴∠FAO=∠CBO,又∵AO=BO,∠AOF=∠BOC,∴△AOF≌△BOC(ASA)∴OF=OC=2,∴点F的坐标为(0,2),设直线AD的解析式为,将A(-4,0)与F(0,2)代入得,解得,∴,联立,解得:,∴D
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 绘本阅读早教课程设计
- 2024年版物资购销协议模板
- 2025年度网络安全应急演练与评估合同
- 2024年葡萄酒购销协议详细条款版B版
- 网络协议编程课程设计java
- 2024房产交易过程中税费分担合同2篇
- 2024年股权交割与转让书
- 2025版高新技术企业研发团队短期派遣服务协议
- 二零二五年城市轨道交通工程合同承包范本3篇
- 2025年度企业清算注销股东权益保障与清算责任界定合同3篇
- 学校膳食管理委员会工作制度和职责
- 房租收条格式(3篇)
- 期末试卷(试题)2024-2025学年培智生活语文二年级上册
- 2024伊利在线测评题
- 红色简约中国英雄人物李大钊课件
- 小学师德考评细则
- 软件定义网络(SDN)实战教程课件
- 上海市住院医师规范化培训公共科目考试题库-重点传染病防治知识
- 2024江苏省铁路集团限公司春季招聘24人高频考题难、易错点模拟试题(共500题)附带答案详解
- 2024智能变电站新一代集控站设备监控系统技术规范部分
- 企业反恐专项经费保障制度
评论
0/150
提交评论