江苏省扬州市江都区郭村中学2024届八年级数学第二学期期末综合测试试题含解析_第1页
江苏省扬州市江都区郭村中学2024届八年级数学第二学期期末综合测试试题含解析_第2页
江苏省扬州市江都区郭村中学2024届八年级数学第二学期期末综合测试试题含解析_第3页
江苏省扬州市江都区郭村中学2024届八年级数学第二学期期末综合测试试题含解析_第4页
江苏省扬州市江都区郭村中学2024届八年级数学第二学期期末综合测试试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江苏省扬州市江都区郭村中学2024届八年级数学第二学期期末综合测试试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.把分式中、的值都扩大为原来的2倍,分式的值()A.缩小为原来的一半 B.扩大为原来的2倍C.扩大为原来的4倍 D.不变2.一次函数的图像经过()A.第一、二、三象限 B.第二、三、四象限 C.第一、三、四象限 D.第一、二、四象限3.如图,直线与反比例函数的图象交于,两点.若点的坐标是,则点的坐标是()A. B. C. D.4.下列二次根式中属于最简二次根式的是()A. B. C. D.5.下列根式中,不是最简二次根式的是()A.105 B.2 C.8 D.6.如图,△ABC中,∠C=900,∠CAB=600,AD平分∠BAC,点D到AB的距离DE=3cm,则BC等于()A.3cm B.6cm C.9cm D.12cm7.当分式有意义时,则x的取值范围是()A.x≠2 B.x≠-2 C.x≠ D.x≠-8.已知反比例函数y=1-2mx的图象上有两点A(x1,y1),B(x2,y2),当x1<0<x2时,有y1<y2,则mA.m<0 B.m>0 C.m<12 D.m>9.如图,在平面直角坐标系xOy中,有一个等腰直角三角形AOB,∠OAB=90°,直角边AO在x轴上,且AO=1.将Rt△AOB绕原点O顺时针旋转90°得到等腰直角三角形A1OB1,且A1O=2AO,再将Rt△A1OB1绕原点O顺时针旋转90°得到等腰三角形A2OB2,且A2O=2A1O……依此规律,得到等腰直角三角形A22OB22.则点B22的坐标()A.(222,-222) B.(22016,-22016) C.(222,222) D.(22016,22016)10.若分式方程+3=有增根,则a的值是()A.﹣1 B.0 C.1 D.211.已知整数x满足﹣5≤x≤5,y1=x+1,y2=2x+4,对于任意一个x,m都取y1、y2中的最小值,则m的最大值是()A.﹣4B.﹣6C.14D.612.在平面直角坐标系中,将点P(﹣2,1)向右平移3个单位长度,再向上平移4个单位长度得到点P′的坐标是()A.(2,4) B.(1,5) C.(1,-3) D.(-5,5)二、填空题(每题4分,共24分)13.若ab<0,化简的结果是____.14.已知反比例函数,当时,y的取值范围是________.15.菱形ABCD的对角线cm,,则其面积等于______.16.甲、乙两学生在军训打靶训练中,打靶的总次数相同,且所中环数的平均数也相同,但甲的成绩比乙的成绩稳定,那么两者的方差的大小关系是___________.(填“>”,“<”或“=”)17.任何一个正整数n都可以进行这样的分解:n=s×t(s,t是正整数,且s≤t),如果p×q在n的所有这种分解中两因数之差的绝对值最小,我们就称p×q是n的最佳分解,并规定:、例如18可以分解成1×18,2×9,3×6这三种,这时就有.给出下列关于F(n)的说法:(1);(2);(3)F(27)=3;(4)若n是一个整数的平方,则F(n)=1.其中正确说法的有_____.18.已知:如图,在四边形ABCD中,∠C=90°,E、F分别为AB、AD的中点,BC=6,CD=4,则EF=______.三、解答题(共78分)19.(8分)有两个不透明的袋子分别装有红、白两种颜色的球(除颜色不同外其余均相同),甲袋中有2个红球和1个白球,乙袋中有1个红球和3个白球.(1)如果在甲袋中随机摸出一个小球,那么摸到红球的概率是______.(2)如果在乙袋中随机摸出两个小球,那么摸到两球颜色相同的概率是______.(3)如果在甲、乙两个袋子中分别随机摸出一个小球,那么摸到两球颜色相同的概率是多少?(请用列表法或树状图法说明)20.(8分)如图,在中,,平分,于.(1)求证:;(2)若,,求的面积.21.(8分)先化简,再求值(1)已知,求的值.(2)当时,求的值.22.(10分)第一个不透明的布袋中装有除颜色外均相同的7个黑球、5个白球和若干个红球每次摇匀后随机摸出一个球,记下颜色后再放回袋中,通过大量重复摸球试验后,发现摸到红球的频率稳定在0.4,估计袋中红球的个数.23.(10分)已知关于的方程.(1)求证:无论取何值时,方程总有实数根;(2)给取一个适当的值,使方程的两个根相等,并求出此时的两个根.24.(10分)如图,在中,,,,,求的长.25.(12分)如图,在△ABC中,∠ACB=90°,AC=8,BC=1.CD⊥AB于点D.点P从点A出发,以每秒1个单位长度的速度沿线段AB向终点B运动.在运动过程中,以点P为顶点作长为2,宽为1的矩形PQMN,其中PQ=2,PN=1,点Q在点P的左侧,MN在PQ的下分,且PQ总保持与AC垂直.设P的运动时间为t(秒)(t>0),矩形PQMN与△ACD的重叠部分图形面积为S(平方单位).(1)求线段CD的长;(2)当矩形PQMN与线段CD有公共点时,求t的取值范围;(3)当点P在线段AD上运动时,求S与t的函数关系式.26.一水果店主分两批购进某一种水果,第一批所用资金为2400元,因天气原因,水果涨价,第二批所用资金是2700元,但由于第二批单价比第一批单价每箱多10元,以致购买的数量比第一批少25%.(1)该水果店主购进第一批这种水果的单价是多少元?(2)该水果店主计两批水果的售价均定为每箱40元,实际销售时按计划无损耗售完第一批后,发现第二批水果品质不如第一批,于是该店主将售价下降a%销售,结果还是出现了20%的损耗,但这两批水果销售完后仍赚了不低于1716元,求a的最大值.

参考答案一、选择题(每题4分,共48分)1、D【解析】

根据分式的分子分母都乘以或除以同一个不为零的数或者整式,分式的值不变,可得答案.【详解】把分式中的x和y的值都扩大到原来的2倍,得

故选D.【点睛】本题考查了分式的基本性质,分式的分子分母都乘以或除以同一个不为零的数或者整式,分式的值不变.2、D【解析】

根据一次函数的性质k<0,则可判断出函数图象y随x的增大而减小,再根据b>0,则函数图象一定与y轴正半轴相交,即可得到答案.【详解】解:∵一次函数y=-2x+3中,k=-2<0,则函数图象y随x的增大而减小,

b=3>0,则函数图象一定与y轴正半轴相交,

∴一次函数y=-2x+3的图象经过第一、二、四象限.

故选:D.【点睛】本题考查了一次函数的图象,一次函数y=kx+b的图象经过的象限由k、b的值共同决定,分如下四种情况:①当k>0,b>0时,函数y=kx+b的图象经过第一、二、三象限;②当k>0,b<0时,函数y=kx+b的图象经过第一、三、四象限;③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限;④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象.3、A【解析】

求出函数关系式,联立组成方程组求出方程组的解即可,也可以直接利用对称性直接得出点A的坐标.【详解】把点B(3,5)代入直线y=ax(a≠0)和反比例函数y=得:a=,k=15,∴直线y=x,与反比例函数y=,,解得:,∴A(-3,-5)故选:A.【点睛】考查一次函数和反比例函数的交点坐标的求法,常规求法是先求出各自的函数关系式,联立方程组求解即可,也可以直接根据函数图象的对称性得出答案.4、D【解析】解:A.=,不是最简二次根式,故A错误;B.=6,不是最简二次根式,故B错误;C.,根号内含有分母,不是最简二次根式,故C错误;D.是最简二次根式,故D正确.故选D.5、C【解析】

根据最简二次根式的概念即可求出答案.【详解】C.原式=22,故C不是最简二次根式,故选:C.【点睛】此题考查最简二次根式,解题关键在于掌握其概念.6、C【解析】

根据直角三角形两锐角互余求出∠B=30°,再根据直角三角形30°角所对的直角边等于斜边的一半可得BD=2DE,根据角平分线上的点到角的两边距离相等可得CD=DE,然后根据BC=BD+CD计算即可得解.【详解】解:∵∠C=90°,∠CAB=60°,

∴∠B=90°-60°=30°,

∵DE⊥AB,

∴BD=2DE=2×3=6cm,

∵AD平分∠BAC,∠C=90°,DE⊥B,

∴CD=DE=3cm,

∴BC=BD+CD=6+3=9cm.

故选:C.【点睛】本题考查了角平分线上的点到角的两边距离相等的性质,直角三角形两锐角互余的性质以及直角三角形30°角所对的直角边等于斜边的一半的性质,熟记各性质并准确识图是解题的关键.7、B【解析】

根据分母不为零列式求解即可.【详解】分式中分母不能为0,所以,3x+6≠0,解得:x≠-2,故选B.【点睛】本题考查了分式有意义的条件,从以下三个方面透彻理解分式的概念:①分式无意义⇔分母为零;②分式有意义⇔分母不为零;③分式值为零⇔分子为零且分母不为零.8、C【解析】

试题分析:根据反比例函数图象上点的坐标特征得到图象只能在一、三象限,故,则1-2m>0,∴m>12故选C.考点:反比例函数图象上点的坐标特征.9、A【解析】∵将Rt△AOB绕原点O顺时针旋转90°得到等腰直角三角形A1OB1,且A1O=2AO,A1B1=OA1,再将Rt△A1OB1绕原点O顺时针旋转90°得到等腰三角形A2OB2,且A2O=2A1O,A2B2=A2O…,依此规律,∴每4次循环一周,B1(2,﹣2),B2(﹣4,-4),B3(-8,8),B4(16,16),∵22÷4=504…1,∴点B22与B1同在第四象限,∵﹣4=﹣22,8=23,16=24,∴点B22(222,-222),故选A.【点睛】本题考查了点的坐标变化规律,得出B点坐标变化规律是解题关键.10、B【解析】

根据分式方程有增根可得出x=2是方程1+3(x-2)=a+1的根,代入x=2即可求出a值.【详解】解:∵分式方程+3=有增根,∴x=2是方程1+3(x-2)=a+1的根,

∴a=1.

故选:B.【点睛】本题考查分式方程的增根,熟记分式方程增根的定义是解题的关键.11、D【解析】

根据题意可得知﹣5≤x≤5,当x=5时,m取最大值,将x=5代入即可得出结论.【详解】解:已知对于任意一个x,m都取y1,y2中的最小值,且求m得最大值,因为y1,y2均是递增函数,所以在x=5时,m取最大值,即m取x=5时,y1,y2中较小的一个,是y1=6.故选D.【点睛】本题考察直线图像的综合运用,能够读懂题意确定m是解题关键.12、B【解析】试题分析:由平移规律可得将点P(﹣2,1)向右平移3个单位长度,再向上平移4个单位长度得到点P′的坐标是(1,5),故选B.考点:点的平移.二、填空题(每题4分,共24分)13、【解析】的被开方数a2b>1,而a2>1,所以b>1.又因为ab<1,所以a、b异号,所以a<1,所以.14、【解析】

利用反比例函数的性质,由x的取值范围并结合反比例函数的图象解答即可.【详解】∵k=1>0,∴在每个象限内y随x的增大而减小,又∵当x=1时,y=1,当x=2时,y=5,∴当1<x<2时,5<y<1.故答案为.【点睛】本题主要考查反比例函数的性质,当k>0时,在每一个象限内,y随x的增大而减小;当k<0时,在每一个象限,y随x的增大而增大.15、【解析】

根据菱形的性质,菱形的面积等于两条对角线乘积的一半,代入数值计算即可。【详解】解:菱形ABCD的面积===【点睛】本题考查了菱形的性质:菱形的面积等于两条对角线乘积的一半。16、<【解析】

根据方差的意义可作出判断,方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【详解】解:∵甲的成绩比乙的成绩稳定,∴S2甲<S2乙,故答案为:<.【点睛】本题考查方差的意义,方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.17、2【解析】

把2,24,27,n分解为两个正整数的积的形式,找到相差最少的两个数,让较小的数除以较大的数,看结果是否与所给结果相同.【详解】∵2=1×2,∴F(2)=,故(1)是正确的;∵24=1×24=2×12=3×8=4×6,这几种分解中4和6的差的绝对值最小,∴F(24)==,故(2)是错误的;∵27=1×27=3×9,其中3和9的绝对值较小,又3<9,∴F(27)=,故(3)是错误的;∵n是一个完全平方数,∴n能分解成两个相等的数,则F(n)=1,故(4)是正确的,∴正确的有(1),(4).故答案为2.【点睛】本题考查了题目信息获取能力,解决本题的关键是理解答此题的定义:所有这种分解中两因数之差的绝对值最小,F(n)=(p≤q).18、【解析】

连接BD,利用勾股定理列式求出BD,再根据三角形的中位线平行于第三边并且等于第三边的一半解答.【详解】解:如图,连接BD,∵∠C=90°,BC=6,CD=4,∴BD===2,∵E、F分别为AB、AD的中点,∴EF是△ABD的中位线,∴EF=BD=×2=.故答案为:.【点睛】本题考查了三角形的中位线平行于第三边并且等于第三边的一半,勾股定理,熟记定理是解题的关键,难点在于作辅助线构造出三角形.三、解答题(共78分)19、(1);(2);(3)摸到的两球颜色相同的概率【解析】

(1)直接利用概率公式计算;(2)利用完全列举法展示6种等可能的结果数,然后根据概率公式求解;(3)画树状图展示所有12种等可能的结果数,找出摸到两球颜色相同的结果数,然后根据概率公式求解.【详解】(1)如果在甲袋中随机摸出一个小球,那么摸到红球的概率是.(2)如果在乙袋中随机摸出两个小球,则有红白、红白、红白、白白、白白、白白共6种等可能的结果数,其中摸到两球颜色相同的概率=.(3)画树状图为:共有12种等可能的结果数,其中摸到两球颜色相同的结果数为5,所以摸到两球颜色相同的概率.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.也考查了统计图.20、(1)见解析;(2)的面积为15.【解析】

(1)根据角平分线上的点到角的两边距离相等证明,再得到结论;

(2)利用勾股定理列式求出BC,再根据△ABC的面积列出方程求出DE,然后根据三角形的面积公式列式计算即可得解.【详解】(1)∵,,∴∵平分,∴,又∵,∴∴.(2)在中,,,,由勾股定理得:,∴.,在中,由(1)可设,由勾股定理得:,解得,∴的面积为,∴的面积为.【点睛】考查了角平分线上的点到角的两边距离相等的性质,勾股定理,难点在于(2)利用三角形的面积列方程求出DE.21、(1);(2)【解析】

(1)先根据分式混合运算的法则把原式进行化简,再把代入进行计算即可;(2)先把分式进行化简计算,在化简时要注意运算顺序,然后再把x=代入化简后的式子即可得到答案.【详解】(1)解:原式=(2分)===当,原式==(2)解:原式当时,原式【点睛】本题考查的是分式的化简求值,分式化简求值时,先化简再把分式中未知数对应的值代入求出分式的值.22、估计袋中红球8个.【解析】

根据摸到红球的频率,可以得到摸到黑球和白球的概率之和,从而可以求得总的球数,从而可以得到红球的个数.【详解】解:由题意可得:摸到黑球和白球的频率之和为:,总的球数为:,红球有:(个.答:估计袋中红球8个.【点睛】此题主要考查了利用频率估计概率,本题利用了用大量试验得到的频率可以估计事件的概率.关键是根据红球的频率得到相应的等量关系.23、(1)详见解析;(2)【解析】

(1)先根据根的判别式求出△,再判断即可;(2)把代入方程,求出方程的解即可.【详解】(1)∵∴无论取何值时,方程总有实数根;(2)当即时,方程的两根相等,此时方程为解得【点睛】本题考查了根的判别式和解一元二次方程,能熟记根的判别式的内容是解此题的关键.24、【解析】

在求出BD的长,在中求出CD的长,利用BC=BD+CD可得出结果.【详解】解:,.在中,,,.在中,,...【点睛】本题主要考查勾股定理,以及含特殊角的直角三角形边之间的关系,掌握基本公式是解题关键.25、(1)CD=;(2)≤t≤;(3)当0<t<时,S=;当≤t≤时,S=2;当<t≤时,S=.【解析】

(1)由勾股定理得出AB=10,由△ABC的面积得出AC•BC=AB•CD,即可得出CD的长;(2)分两种情形:①当点N在线段CD上时,如图1所示,利用相似三角形的性质求解即可.②当点Q在线段CD上时,如图2所示,利用相似三角形的性质求解即可;(3)首先求出点Q落在AC上的运动时间t,再分三种情形:①当0<t<时,重叠部分是矩形PNYH,如图4所示,②当≤t≤时,重合部分是矩形PNMQ,S=PQ•PN=2,③当<t≤时,如图5中重叠部分是五边形PQMJI,分别求解即可.【详解】解:(1)∵∠ACB=90°,AC=8,BC=1,∴AB==10,∵S△ABC=AC•BC=AB•CD,∴AC•BC=AB•CD,即:8×1=10×CD,∴CD=;(2)在Rt△ADC中,AD=,B

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论