2024年四川省乐山市五中学数学八年级下册期末质量检测试题含解析_第1页
2024年四川省乐山市五中学数学八年级下册期末质量检测试题含解析_第2页
2024年四川省乐山市五中学数学八年级下册期末质量检测试题含解析_第3页
2024年四川省乐山市五中学数学八年级下册期末质量检测试题含解析_第4页
2024年四川省乐山市五中学数学八年级下册期末质量检测试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024年四川省乐山市五中学数学八年级下册期末质量检测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每题4分,共48分)1.以下列长度(单位:cm)为边长的三角形是直角三角形的是()A.3,4,5 B.1,2,3 C.5,7,9 D.6,10,122.如图,的对角线与相交于点,,,,则的长为()A. B. C. D.3.下列由左到右的变形,属于因式分解的是()A. B.C. D.4.若是三角形的三边长,则式子的值(

).A.小于0 B.等于0 C.大于0 D.不能确定5.“凤鸣”文学社在学校举行的图书共享仪式上互赠图书,每个同学都把自己的图书向本组其他成员赠送一本,某组共互赠了210本图书,如果设该组共有x名同学,那么依题意,可列出的方程是()A.x(x+1)=210 B.x(x﹣1)=210C.2x(x﹣1)=210 D.x(x﹣1)=2106.如图,在平面直角坐标系中,菱形ABCO的顶点O为坐标原点,边CO在x轴正半轴上,∠AOC=60°,反比例函数y=(x>0)的图象经过点A,交菱形对角线BO于点D,DE⊥x轴于点E,则CE长为()A.1 B. C.2﹣ D.﹣17.用长为28米的铝材制成一个矩形窗框,使它的面积为25平方米.若设它的一边长为x米,根据题意列出关于x的方程为()A.x(28﹣x)=25 B.2x(14﹣x)=25C.x(14﹣x)=25 D.8.小明骑自行车到公园游玩,匀速行驶一段路程后,开始休息,休息了一段时间后,为了尽快赶到目的地,便提高了,车速度,很快到达了公园.下面能反映小明离公园的距离(千米)与时间(小时)之间的函数关系的大致图象是()A. B. C. D.9.在Rt△ABC中,∠ACB=90°,AB=6cm,D为AB的中点,则CD等于()A.2cm B.2.5cm C.3cm D.4cm10.若点A(2,4)在函数的图象上,则下列各点在此函数图象上的是().A.(0,) B.(,0) C.(8,20) D.(,)11.如图,在菱形ABCD中,AB=4,∠A=120°,点P,Q,K分别为线段BC,CD,BD上的任意一点,则PK+QK的最小值为()A.2 B.2 C.4 D.2+212.《九章算术》记载“今有邑方不知大小,各中开门.出北门三十步有木,出西门七百五十步见木.问邑方有几何?”意思是:如图,点M、点N分别是正方形ABCD的边AD、AB的中点,ME⊥AD,NF⊥AB,EF过点A,且ME=30步,NF=750步,则正方形的边长为()A.150步 B.200步 C.250步 D.300步二、填空题(每题4分,共24分)13.如图,在矩形ABCD中,AD=4,E,F分别为边AB,CD上一动点,AE=CF,分别以DE,BF为对称轴翻折△ADE,△BCF,点A,C的对称点分别为P,Q.若点P,Q,E,F恰好在同一直线上,且PQ=1,则EF的长为_____.14.已知直线y=2x+4与x轴、y轴分别交于A、B两点,点P(-1,m)为平面直角坐标系内一动点,若△ABP面积为1,则m的值为______.15.如图,正方形OABC的边OA,OC在坐标轴上,矩形CDEF的边CD在CB上,且5CD=3CB,边CF在轴上,且CF=2OC-3,反比例函数y=(k>0)的图象经过点B,E,则点E的坐标是____16.有一组数据:.将这组数据改变为.设这组数据改变前后的方差分别是,则与的大小关系是______________.17.一次函数y=kx+3的图象过点A(1,4),则这个一次函数的解析式_____.18.如图,在中,点D、E分别是AB、AC的中点,连接BE,若,,,则的周长是_________度.三、解答题(共78分)19.(8分)(2010•清远)正比例函数y=kx和一次函数y=ax+b的图象都经过点A(1,2),且一次函数的图象交x轴于点B(4,0).求正比例函数和一次函数的表达式.20.(8分)如图,在□ABCD中,∠ABC,∠BCD的平分线分别交AD于点E,F,BE,CF相交于点G.(1)求证:BE⊥CF;(2)若AB=a,CF=b,求BE的长.21.(8分)学校规定学生的学期总评成绩满分为100分,学生的学期总评成绩根据平时成绩、期中考试成绩和期末考试成绩按照2∶3∶5的比确定,小欣的数学三项成绩依次是85、90、94,求小欣这学期的数学总评成绩.22.(10分)在每年五月第二个星期日的母亲节和每年六月第三个星期日的父亲节这两天,很多青少年会精心准备小礼物和贺卡送给父母,以感谢父母的养育之恩.某商家看准商机,在今年四月底储备了母亲节贺卡A、B和父亲节贺卡C、D共2500张.(1)按照往年的经验,该商家今年母亲节贺卡的储备量至少应定为父亲节贺卡的1.5倍,求该商家今年四月底至多储备了多少张父亲节贺卡.(2)截至今年6月30日,母亲节贺卡A、B的销售总金额和父亲节贺卡C、D的销售总金额相同.已知母亲节贺卡A的销售单价为20元,共售出150张,贺卡B的销售单价为2元,共售出1000张;父亲节贺卡C的销售单价比贺卡A少m%,但是销售量与贺卡A相同,贺卡D的销售单价比贺卡B多4m%,销售量比贺卡B少m%,求m的值.23.(10分)关于的一元二次方程为(1)求证:无论为何实数,方程总有实数根;(2)为何整数时,此方程的两个根都为正数.24.(10分)已知:直线y=2x+6、直线y=﹣2x﹣4与y轴的交点分别为A点、B点.(1)请直接写出点A、B的坐标;(2)若两直线相交于点C,试求△ABC的面积.25.(12分)已知与成反比例,且当时,.(1)求关于的函数表达式.(2)当时,的值是多少?26.如图在平面直角坐标系中,O是坐标原点,矩形OACB的顶点A,B分别在x轴、y轴上,已知,点D为y轴上一点,其坐标为,若连接CD,则,点P从点A出发以每秒1个单位的速度沿线段的方向运动,当点P与点B重合时停止运动,运动时间为t秒(1)求B,C两点坐标;(2)求的面积S关于t的函数关系式;(3)当点D关于OP的对称点E落在x轴上时,请直接写出点E的坐标,并求出此时的t值.

参考答案一、选择题(每题4分,共48分)1、A【解析】

利用勾股定理的逆定理:如果三角形两条边的平方和等于第三边的平方,那么这个三角形就是直角三角形.最长边所对的角为直角.由此判定即可.【详解】A.因为3+4=5,所以三条线段能组成直角三角形;B.因为1+2≠3,所以三条线段不能组成直角三角形;C.因为5+7≠9,所以三条线段不能组成直角三角形;D.因为6+10≠12,所以三条线段不能组成直角三角形;故选:A.【点睛】此题考查勾股定理的逆定理,难度不大2、A【解析】

由平行四边形ABCD得OA=OC,OB=OD,在Rt△ABO中,由勾股定理得AB的长,即可得出答案.【详解】解:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵,,,∴OA=3,OB=4,∵,在Rt△ABO中,由勾股定理得AB==,∴CD=AB=.故选A.【点睛】本题考查平行四边形的性质,勾股定理.正确的理解平行四边形的性质勾股定理是解决问题的关键.3、C【解析】

根据因式分解的意义,可得答案.【详解】A.是整式的乘法,故A错误;B.没把一个多项式转化成几个整式积的形式,故B错误;C.把一个多项式转化成几个整式积的形式,故C正确;D没把一个多项式转化成几个整式积的形式,故D错误.故答案选:C.【点睛】本题考查的知识点是因式分解的意义,解题的关键是熟练的掌握因式分解的意义.4、A【解析】

先利用平方差公式进行因式分解,再利用三角形三边关系定理进行判断即可得解.【详解】解:=(a-b+c)(a-b-c)根据三角形两边之和大于第三边,两边之差小于第三边,(a-c+b)(a-c-b)<0故选A.【点睛】本题考查了多项式因式分解的应用,三角形三边关系的应用,熟练掌握三角形三条边的关系是解答本题的关键.5、B【解析】

设全组共有x名同学,那么每名同学送出的图书是(x−1)本;则总共送出的图书为x(x−1);又知实际互赠了210本图书,则x(x−1)=210.故选:B.6、C【解析】

由菱形ABCO,∠AOC=60°,由解直角三角形可以设A(m,m),又点A在反比例函数的图像上,带入可以求出A的坐标,进而可以求出OA的长度,即OC可求.再根据菱形ABCO,∠AOC=60°,可知∠BOC=30°,可设E(n,0),则D(n,n),带入反比例函数的解析式可以求出E点坐标,于是CE=OC-OE,可求.【详解】解:∵四边形ABCO为菱形,∠AOC=60°,∴可设A(m,m),又∵A点在反比例函数y=上,∴m2=2,得m=(由题意舍m=-),∴A(,),OA=2,∴OC=OA=2,又∵四边形ABCO为菱形,∠AOC=60°,OB为四边形ABCO的对角线,∴∠BOC=30°,可设D(n,n),则E(n,0),∵D在反比例函数y=上,∴n2=2,解得n=(由题意舍n=-),∴E(,0),∴OE=,则有CE=OC-OE=2-.故答案选C.【点睛】掌握菱形的性质,理解“30°角所对应的直角边等于斜边的一半”,再依据勾股定理分别设出点A和点D的坐标,代入反比例函数的解析式.灵活运用菱形和反比例函数的性质和解直角三角形是解题的关键.7、C【解析】

由它的一边长为x,表示出另一边长,根据矩形的面积公式列出方程即可得.【详解】设它的一边长为x米,则另一边长为=14﹣x(米),根据题意,得:x(14﹣x)=25,故选C.【点睛】本题考查由实际问题抽象出一元二次方程,解答本题的关键是明确题意,列出相应的方程.8、C【解析】

根据匀速行驶,到终点的距离在减少,休息时路程不变,休息后的速度变快,路程变化快,可得答案.【详解】A.路程应该在减少,故A不符合题意;B.路程先减少得快,后减少的慢,不符合题意,故B错误;C.休息前路程减少的慢,休息后提速在匀速行驶,路程减少得快,故C符合题意;D.休息时路程应不变,不符合题意,故D错误;故选C.【点睛】本题考查了函数图象,路程先减少得慢,休息后减少得快是解题关键.9、C【解析】

根据直角三角形斜边上的中线等于斜边的一半可得CD=12AB【详解】解:∵∠ACB=90°,D为AB的中点,

∴CD=12AB=12×6=3cm.

故选:【点睛】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,熟记性质是解题的关键.10、A【解析】∵点A(2,4)在函数y=kx-2的图象上,

∴2k-2=4,解得k=3,

∴此函数的解析式为:y=3x-2,

A选项:∵3×0-2=-2,∴此点在函数图象上,故本选项正确;

B选项:∵3×()-2=1.5≠0,∴此点在不函数图象上,故本选项错误;

C选项:∵3×(8)-2=22≠20,∴此点在不函数图象上,故本选项错误;

D选项:∵3×-2=-0.5≠,∴此点在不函数图象上,故本选项错误.

故选A.11、B【解析】

解:作点P关于BD的对称点P′,作P′Q⊥CD交BD于K,交CD于Q,∵AB=4,∠A=120°,∴点P′到CD的距离为4×=,∴PK+QK的最小值为,故选B.【点睛】本题考查轴对称-最短路线问题;菱形的性质.12、D【解析】

根据题意,可知Rt△AEM∽Rt△FAN,从而可以得到对应边的比相等,从而可以求得正方形的边长.【详解】解:设正方形的边长为x步,∵点M、点N分别是正方形ABCD的边AD、AB的中点,∴AM=AD,AN=AB,∴AM=AN,由题意可得,Rt△AEM∽Rt△FAN,∴,即AM2=30×750=22500,解得:AM=150,∴AD=2AM=300步;故选:D.【点睛】本题考查相似三角形的应用、正方形的性质,解答本题的关键是明确题意.利用相似三角形的性质和数形结合的思想解答.二、填空题(每题4分,共24分)13、2或【解析】

过点E作,垂足为G,首先证明为等腰三角形,然后设,然后分两种情况求解:I.当QF与PE不重叠时,由翻折的性质可得到,则,II.当QF与PE重叠时,:EF=DF=2x﹣1,FG=x﹣1,然后在中,依据勾股定理列方程求解即可.【详解】解:I.当QF与PE不重叠时,如图所示:过点E作EG⊥DC,垂足为G.设AE=FC=x.由翻折的性质可知:∠AED=∠DEP,EP=AE=FC=QF=x,则EF=2x+1.∵AE∥DG,∴∠AED=∠EDF.∴∠DEP=∠EDF.∴EF=DF.∴GF=DF﹣DG=x+1.在Rt△EGF中,EF2=EG2+GF2,即(2x+1)2=42+(x+1)2,解得:x=2(负值已舍去).∴EF=2x+1=2×2+1=2.II.当QF与PE重叠时,备用图中,同法可得:EF=DF=2x﹣1,FG=x﹣1,在Rt△EFG中,∵EF2=EG2+FG2,∴(2x﹣1)2=42+(x﹣1)2,∴x=或﹣2(舍弃),∴EF=2x﹣1=故答案为:2或.【点睛】本题主要考查的是翻折的性质、勾股定理的应用,依据勾股定理列出关于x的方程是解题的关键.14、3或1【解析】

过点P作PE⊥x轴,交线段AB于点E,即可求点E坐标,根据题意可求点A,点B坐标,由可求m的值.【详解】解:∵直线y=2x+4与x轴、y轴分别交于A、B两点,∴当x=0时,y=4当y=0时,x=-2∴点A(-2,0),点B(0,4)如图:过点P作PE⊥x轴,交线段AB于点E∴点E横坐标为-1,∴y=-2+4=2∴点E(-1,2)∴|m-2|=1∴m=3或1故答案为:3或1【点睛】本题考查了一次函数图象上点的坐标特征,熟练运用一次函数的性质解决问题是本题的关键.15、【解析】

设正方形OABC的边0A=a,可知OA=OC=AB=CB=a,所以点B的坐标为(aa),推出反比例函数解析式的k=a,再由CF=2OC-3,可知CF=2a-3,推出点的坐标为(,3a-3),根据5CD=3CB,可求出点E的坐标【详解】由题意可设:正方形OABC的边OA=a∴OA=OC=AB=CB∴点B的坐标为(a,a),即k=aCF=2OC-3∴CF=2a-3∵OF=OC+CF=a+2a-3=3a-3∴点E的纵坐标为3a-3将3a-3代入反比例函数解析式y=中,可得点E的横坐标为∵四边形CDEF为矩形,∴CD=EF=5CD=3CB=3a,可求得:a=将a=,代入点E的坐标为(,3a-3),可得:E的坐标为故答案为:【点睛】本题考查了反比例函数图像上点的坐标特征,正方形矩形的性质,熟知在反比例函数的题目中利用设点法找等量关系解方程是解题关键16、【解析】

设数据,,,,的平均数为,根据平均数的定义得出数据,,,,的平均数也为,再利用方差的定义分别求出,,进而比较大小.【详解】解:设数据,,,,的平均数为,则数据,,,,的平均数也为,,,.故答案为.【点睛】本题考查方差的定义:一般地设个数据,,,的平均数为,则方差,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.17、y=x+3【解析】因为一次函数y=kx+3的图象过点A(1,4),所以k+3=4,解得,k=1,所以,该一次函数的解析式是:y=x+3,故答案是:y=x+3【点睛】运用了待定系数法求一次函数解析式,一次函数图象上点的坐标特征.直线上任意一点的坐标都满足函数关系式y=kx+b(k≠0).18、26【解析】

由题意可知,DE为的中位线,依据中位线定理可求出BC的长,因为,故BE=BC,而EC=AE,此题得解.【详解】解:点D、E分别是AB、AC的中点DE为的中位线,又故答案为:26【点睛】本题考查了中位线定理、等角对等边,熟练利用这两点求线段长是解题的关键.三、解答题(共78分)19、y=x+.【解析】试题分析:由题意正比例函数y=kx过点A(1,2),代入正比例函数求出k值,从而求出正比例函数的解析式,由题意y=ax+b的图象都经过点A(1,2)、B(4,0),把此两点代入一次函数根据待定系数法求出一次函数的解析式.解:由正比例函数y=kx的图象过点(1,2),得:k=2,所以正比例函数的表达式为y=2x;由一次函数y=ax+b的图象经过点(1,2)和(4,0)得解得:a=,b=,∴一次函数的表达式为y=x+.考点:待定系数法求一次函数解析式.20、(1)见详解;(2).【解析】

(1)由平行四边形的性质和角平分线的性质,证明∠EBC+∠FCB=90°即可解决问题;(2)如图,作EH∥AB交BC于点H,连接AH交BE于点P.构造特殊四边形菱形,利用菱形的性质,结合勾股定理即可解决问题;【详解】(1)证明:∵四边形ABCD是平行四边形,

∴AB∥CD,

∴∠ABC+∠BCD=180°,

∵BE,CF分别是∠ABC,∠BCD的平分线,

∴∠EBC=∠ABC,∠FCB=∠BCD,

∴∠EBC+∠FCB=90°,

∴∠BGC=90°.

即BE⊥CF.(2)如图,作EH∥AB交BC于点H,连接AH交BE于点P.

∵BE平分∠ABC,∴∠ABE=∠CBE,∵AD∥BC,∴∠AEB=∠CBE,∴∠ABE=∠AEB,∴AB=AE,∴四边形ABHE是菱形,∴AH,BE互相垂直平分;

∵BE⊥CF,∴AH∥CF,∴四边形AHCF是平行四边形,∴AP=;在Rt△ABP中,由勾股定理,得:,∴.【点睛】本题考查平行四边形的性质、角平分线的定义、等腰三角形的判定和性质、菱形的判定和性质、勾股定理等知识,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,构造特殊四边形解决问题.21、小欣这学期的数学总评成绩为91分.【解析】

根据加权平均数的计算公式即可得.【详解】由题意得:小欣这学期的数学总评成绩为(分)答:小欣这学期的数学总评成绩为91分.【点睛】本题考查了加权平均数的应用,熟记公式是解题关键.22、(1)该商家四月底至多储备1000张父亲节贺卡(2)m的值为:37.1【解析】

(1)设储备父亲节贺卡x张,母亲节贺卡的储备量至少应定为父亲节贺卡的1.1倍,得出不等式解答即可.(2)根据题意列出等式:20×110+2×1000=20(1﹣m%)×110+2(1+4m%)×1000(1﹣m%),算出结果.【详解】解:(1)设储备父亲节贺卡x张,依题知2100﹣x≥1.1x,∴x≤1000,答:该商家四月底至多储备1000张父亲节贺卡.(2)由题意得:20×110+2×1000=20(1﹣m%)×110+2(1+4m%)×1000(1﹣m%)令t=m%,则8t2﹣3t=0,∴t1=0(舍),t2=0.371,∴m=37.1答:m的值为:37.1.【点睛】本题主要考查了一元一次不等式和一元二次方程,列方程解决实际问题的一般步骤是:审清题意设未知数,列出方程,解所列方程求所列方程的解,检验和作答.23、(1)为任何实数方程总有实数根;(2).【解析】

(1)表示出根的判别式,得到根的判别式大于0,进而确定出方程总有两个不相等的实数根;(2)根据根与系数的关系列出方程,结合题目条件求解即可.【详解】(1)∴为任何实数方程总有实数根。(2)设方程两根为,,则由题可得,∴或∴∵是整数,∴【点睛】

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论