![揭阳真理中学2024年八年级数学第二学期期末监测模拟试题含解析_第1页](http://file4.renrendoc.com/view2/M02/1E/21/wKhkFmYdT4mAflDuAAIVFKGD1Vo525.jpg)
![揭阳真理中学2024年八年级数学第二学期期末监测模拟试题含解析_第2页](http://file4.renrendoc.com/view2/M02/1E/21/wKhkFmYdT4mAflDuAAIVFKGD1Vo5252.jpg)
![揭阳真理中学2024年八年级数学第二学期期末监测模拟试题含解析_第3页](http://file4.renrendoc.com/view2/M02/1E/21/wKhkFmYdT4mAflDuAAIVFKGD1Vo5253.jpg)
![揭阳真理中学2024年八年级数学第二学期期末监测模拟试题含解析_第4页](http://file4.renrendoc.com/view2/M02/1E/21/wKhkFmYdT4mAflDuAAIVFKGD1Vo5254.jpg)
![揭阳真理中学2024年八年级数学第二学期期末监测模拟试题含解析_第5页](http://file4.renrendoc.com/view2/M02/1E/21/wKhkFmYdT4mAflDuAAIVFKGD1Vo5255.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
揭阳真理中学2024年八年级数学第二学期期末监测模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题3分,共30分)1.下列式子中,为最简二次根式的是()A. B. C. D.2.如图,已知线段AB=12,点M、N是线段AB上的两点,且AM=BN=2,点P是线段MN上的动点,分别以线段AP、BP为边在AB的同侧作正方形APDC、正方形PBFE,点G、H分别是CD、EF的中点,点O是GH的中点,当P点从M点到N点运动过程中,OM+OB的最小值是()A.10 B.12 C.2 D.123.如图,大正方形与小正方形的面积之差是40,则阴影部分的面积是()A.80 B.40 C.20 D.104.如图,的对角线,相交于点,点为中点,若的周长为28,,则的周长为()A.12 B.17 C.19 D.245.用一条直线m将如图1的直角铁皮分成面积相等的两部分.图2、图3分别是甲、乙两同学给出的作法,对于两人的作法判断正确的是()A.甲正确,乙不正确 B.甲不正确,乙正确C.甲、乙都正确 D.甲、乙都不正确6.《九章算术》中的“折竹抵地”问题上:今有竹高一丈,末折抵地,去本六尺。问折高几何?意思是:如图,一根竹子,原高一丈(一丈=10尺),一阵风将竹子折断,其竹梢恰好抵地,抵地处离竹子底部6尺远。问折断处离地面的高度是多少?设折断处离地面的高度为x尺,则可列方程为()A.x2-6=10-xC.x2+6=(10-x)2 D.x2+62=(10-x)27.下列图形中的曲线不表示y是x的函数的是()A. B. C. D.8.当x<a<0时,与ax的大小关系是().A.>ax B.≥ax C.<ax D.≤ax9.某医药研究所开发了一种新药,在试验效果时发现,如果成人按规定剂量服用,服药后血液中的含药量逐渐增多,一段时间后达到最大值,接着药量逐步衰减直至血液中含药量为0,每毫升血液中含药量(微克)随时间(小时)的变化如图所示,下列说法:(1)2小时血液中含药量最高,达每毫升6微克.(2)每毫升血液中含药量不低于4微克的时间持续达到了6小时.(3)如果一病人下午6:00按规定剂量服此药,那么,第二天中午12:00,血液中不再含有该药,其中正确说法的个数是()A.0 B.1C.2 D.310.实数a、b在数轴上对应的位置如图所示,则等于A. B. C. D.二、填空题(每小题3分,共24分)11.若关于x的一元二次方程x22x+m=0有实数根,则实数m的取值范围是______.12.如图,在中,对角线,相交于点,添加一个条件判定是菱形,所添条件为__________(写出一个即可).13.计算的结果等于______.14.不等式组的解集是_____.15.如图,在菱形ABCD中,AB=5,对角线AC=1.若过点A作AE⊥BC,垂足为E,则AE的长为_________.16.将二元二次方程化为两个一次方程为______.17.如图,点P是正比例函数y=x与反比例函数在第一象限内的交点,PA⊥OP交x轴于点A,则△POA的面积为_______.18.将矩形ABCD折叠,使得对角线的两个端点A.C重合,折痕所在直线交直线AB于点E,如果AB=4,BE=1,则BC的长为______.三、解答题(共66分)19.(10分)我市遗爱湖公园内有一块四边形空地,如图所示,景区管理人员想在这块空地上铺满观赏草坪,需要测量其面积.经技术人员测量,∠ABC=90°,AB=20米,BC=15米,CD=7米,AD=24米.(1)请你帮助管理人员计算出这个四边形对角线AC的长度;(2)请用你学过的知识帮助管理员计算出这块空地的面积.20.(6分)如图,在四边形中,、、、分别是、、、的中点,.求证:.21.(6分)如图,在平面直角坐标系中,过点B(6,0)的直线AB与直线OA相交于点A(4,2).
(1)求直线AB的解析式.(2)求△OAC的面积.(3)在y轴的负半轴上是否存在点M,使△ABM是以AB为直角边的直角角形?如果存在,求出点M的坐标;如果不存在,说明理由.22.(8分)在平面直角坐标系中,一次函数的图象与轴负半轴交于点,与轴正半轴交于点,点为直线上一点,,点为轴正半轴上一点,连接,的面积为1.(1)如图1,求点的坐标;(2)如图2,点分别在线段上,连接,点的横坐标为,点的横坐标为,求与的函数关系式(不要求写出自变量的取值范围);(3)在(2)的条件下,如图3,连接,点为轴正半轴上点右侧一点,点为第一象限内一点,,,延长交于点,点为上一点,直线经过点和点,过点作,交直线于点,连接,请你判断四边形的形状,并说明理由.23.(8分)(问题原型)如图,在中,对角线的垂直平分线交于点,交于点,交于点.求证:四边形是菱形.(小海的证法)证明:是的垂直平分线,,(第一步),(第二步).(第三步)四边形是平行四边形.(第四步)四边形是菱形.(第五步)(老师评析)小海利用对角线互相平分证明了四边形是平行四边形,再利用对角线互相垂直证明它是菱形,可惜有一步错了.(挑错改错)(1)小海的证明过程在第________步上开始出现了错误.(2)请你根据小海的证题思路写出此题的正确解答过程,24.(8分)为加快城市群的建设与发展,在A、B两城市间新建一条城际铁路,建成后,铁路运行里程由现在的210km缩短至180km,平均时速要比现行的平均时速快200km,运行时间仅是现行时间的,求建成后的城际铁路在A、B两地的运行时间?25.(10分)如图,AD是△ABC的高,BE平分∠ABC交AD于点E,∠C=70º,∠BED=64º,求∠BAC的度数.26.(10分)已知y是x的一次函数,当x=1时,y=1;当x=-2时,y=-14.(1)求这个一次函数的关系式;(2)在如图所示的平面直角坐标系中作出函数的图像;(3)由图像观察,当0≤x≤2时,函数y的取值范围.
参考答案一、选择题(每小题3分,共30分)1、B【解析】
利用最简二次根式定义判断即可.【详解】A、原式,不符合题意;B、是最简二次根式,符合题意;C、原式,不符合题意;D、原式,不符合题意;故选:B.【点睛】此题考查了最简二次根式,熟练掌握最简二次根式是解本题的关键.2、C【解析】
作点M关于直线XY的对称点M′,连接BM′,与XY交于点O,由轴对称性质可知,此时OM+OB=BM′最小,根据勾股定理即可求出BM'的值.【详解】解:作点M关于直线XY的对称点M′,连接BM′,与XY交于点O.O′O″⊥A于O″B.GL⊥AB于L,HT⊥AB于T.由轴对称性质可知,此时OM+OB=BM′最小(O′O″=(GL+HT)=6),在Rt△BMM′中,MM′=2O′O″=2×6=12,BM=10,由勾股定理得:BM′==2,∴OM+OB的最小值为2,故选C.【点睛】本题考查了正方形的性质和轴对称及勾股定理等知识的综合应用.综合运用这些知识是解决本题的关键.3、C【解析】
设大小两个正方形的面积分别为a、b,得到a2-b2=40;又阴影部分面积=△AEC+△ADE,然后使用三角形面积公式进行计算、化简即可解答。【详解】解:如图:设大小两个正方形的面积分别为a,b则有a2-b2=40又∵阴影部分面积=△AEC+△ADE====20故答案为C。【点睛】本题考查了几何图形中阴影面积的求法,关在于运用数形结合,将不规则图形化归为规则的几何图形的组合。4、A【解析】
由四边形ABCD是平行四边形,根据平行四边形的性质可得OB=OD,再由E是CD中点,即可得BE=BC,OE是△BCD的中位线,由三角形的中位线定理可得OE=AB,再由▱ABCD的周长为28,BD=10,即可求得AB+BC=14,BO=5,由此可得BE+OE=7,再由△OBE的周长为=BE+OE+BO即可求得△OBE的周长.【详解】∵四边形ABCD是平行四边形,∴O是BD中点,OB=OD,又∵E是CD中点,∴BE=BC,OE是△BCD的中位线,∴OE=AB,∵▱ABCD的周长为28,BD=10,∴AB+BC=14,∴BE+OE=7,BO=5∴△OBE的周长为=BE+OE+BO=7+5=1.故选A.【点睛】本题考查了平行四边形的性质及三角形的中位线定理,熟练运用性质及定理是解决问题的关键.5、C【解析】
根据图形中所画出的虚线,可以利用图形中的长方形、梯形的面积比较得出直线两旁的面积的大小关系.【详解】如图:图形2中,直线m经过了大长方形和小长方形的对角线的交点,所以两旁的图形的面积都是大长方形和小长方形面积的一半,所以这条直线把这个图形分成了面积相等的两部分,即甲做法正确;图形3中,经过大正方形和图形外不添补的长方形的对角线的交点,直线两旁的面积都是大正方形面积的一半-添补的长方形面积的一半,所以这条直线把这个图形分成了面积相等的两部分,即乙做法正确.故选C.【点睛】此题主要考查了中心对称,根据图形中的割补情况,抓住经过对角线的交点的直线都能把长方形分成面积相等的两部分这一特点,即可解决问题.6、D【解析】
根据题意画出图形,设折断处离地面的高度为x尺,再利用勾股定理列出方程即可.【详解】解:如图,设折断处离地面的高度为x尺,则AB=10-x,BC=6,
在Rt△ABC中,AC1+BC1=AB1,即x1+61=(10-x)1.
故选:D.【点睛】本题考查的是勾股定理的应用,在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图,领会数形结合的思想的应用.7、C【解析】
函数是指:对于任何一个自变量x的值都有唯一确定的函数值y与之相对应.【详解】根据函数的图象,选项C的图象中,x取一个值,有两个y与之对应,故不是函数.故选C【点睛】考点:函数的定义8、A【解析】根据不等式的基本性质3,不等式的两边同乘以一个负数,不等号的方向改变,可得x2>ax.故选A.9、D【解析】
通过观察图象获取信息列出函数解析式,并根据一次函数的性质逐一进行判断即可。【详解】解:由图象可得,服药后2小时内,血液中的含药量逐渐增多,在2小时的时候达到最大值,最大值为每毫升6微克,故(1)是正确的;设当0≤x≤2时,设y=kx,∴2k=6,解得k=3∴y=3x当y=4时,x=设直线AB的解析式为y=ax+b,得解得a=-;b=∴y=-x+当y=4时,x=∴每毫升血液中含药量不低于4微克的时间持续-小时,故(2)正确把y=0代入y=-x+得x=18前一天下午六点到第二天上午12点时间为18小时,所以(3)正确。故正确的说法有3个.故选:D【点睛】主要考查了函数图象的读图能力.要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.10、A【解析】
直接利用数轴得出,,进而化简得出答案.【详解】解:由数轴可得:,,则原式.故选A.【点睛】此题主要考查了二次根式的性质与化简,正确得出各项的符号是解题关键.二、填空题(每小题3分,共24分)11、m≤1【解析】
利用判别式的意义得到,然后解不等式即可.【详解】解:根据题意得,
解得.
故答案为:.【点睛】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:当△>0时,方程有两个不相等的两个实数根;当△=0时,方程有两个相等的两个实数根;当△<0时,方程无实数根.12、AD=AB【解析】
根据菱形的判定定理即可求解.【详解】∵四边形ABCD为平行四边形,所以可以添加AD=AB,即可判定是菱形,故填:AD=AB.【点睛】此题主要考查菱形的判定,解题的关键是熟知菱形的判定定理.13、3【解析】
根据平方差公式()即可运算.【详解】解:原式=.【点睛】本题考查了平方差公式,熟记平方差公式是解决此题的关键.14、x≤1【解析】
先求出每个不等式的解集,再求出不等式组的解集即可.【详解】解:解不等式①得:x≤1,解不等式②得:x<7,∴不等式组的解集是x≤1,故答案为:x≤1.【点睛】本题考查了解一元一次不等式组,能根据不等式的解集求出不等式组的解集是解此题的关键.15、【解析】
设BE=x,则CE=5-x,在Rt△ABE和Rt△ACE中,由勾股定理表示出AE的平方,列出方程求解并进一步得到AE的长.【详解】设BE=x,则CE=5-x,在Rt△ABE和Rt△ACE中,由勾股定理可得:所以解得,所以AE=.考点:1.菱形的性质;2.勾股定理.16、和【解析】
二元二次方程的中间项,根据十字相乘法,分解即可.【详解】解:,,∴,.故答案为:和.【点睛】本题考查了高次方程解法和分解因式的能力.熟练运用十字相乘法,是解答本题的关键.17、1【解析】
P在y=x上可知△POA为等腰直角三角形,过P作PC⊥OA于点C,则可知S△POC=S△PCA=k=2,进而可求得△POA的面积为1.【详解】解:过P作PC⊥OA于点C,
∵P点在y=x上,
∴∠POA=15°,
∴△POA为等腰直角三角形,
则S△POC=S△PCA=k=2,
∴S△POA=S△POC+S△PCA=1,
故答案为1.【点睛】本题考查反比例函数y=(k≠0)系数k的几何意义:从反比例函数y=(k≠0)图象上任意一点向x轴和y轴作垂线,垂线与坐标轴所围成的矩形面积为|k|.也考查了等腰直角三角形的性质.18、或2【解析】
分类讨论:当点E在线段AB上,连结CE,根据折叠的性质得到AE=CE=3,然后在Rt△BCE中,利用勾股定理计算BC;当点E在线段AB的延长线上,连结CE,根据折叠的性质得AE=CE=5,在Rt△BCE中,根据勾股定理计算BC.【详解】当点E在线段AB上,如图1,连结CE,∵AB=4,BE=1,∴AE=3,∵将矩形ABCD折叠,使得对角线的两个端点A.C重合,∴AE=CE=3,在Rt△BCE中,BC=;当点E在线段AB的延长线上,如图2,连结CE,∵AB=4,BE=1,∴AE=5,∵将矩形ABCD折叠,使得对角线的两个端点A.C重合,∴AE=CE=5,在Rt△BCE中,BC=,∴BC的长为或.【点睛】本题考查折叠问题,分情况解答是解题关键.三、解答题(共66分)19、(1)25米;(2)234米2【解析】
(1)连接AC,利用勾股定理求出AC即可;(2)利用勾股定理的逆定理证明∠ADC=90°,计算两个直角三角形面积即可解决问题【详解】(1)连接AC.在RtΔABC中,由勾股定理得:AC=AB2(2)在ΔADC中,∵AD∴∠ADC=90°.∴S四边形ABCD=【点睛】本题考查勾股定理及其逆定理的应用,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.20、见解析.【解析】
连接,,根据是的中点,及、、分别是、、的中点可以证明【详解】解:证明:连接,.∵是的中点,.∴.∵、、分别是、、的中点,∴,,∴.【点睛】本题主要考查了三角形的中位线定理,三角形的中位线平行于第三边,并且等于第三边的一半.21、(1)y=﹣x+6;(2)12;(3)点M的坐标为(0,-2)或(0,-6).【解析】分析:(1)利用待定系数法即可求得函数的解析式;(2)求得C的坐标,即OC的长,利用三角形的面积公式即可求解;(3)分两种情形①过点A作AB的垂线AM交y轴与M.②过点B作BM′⊥AB交y轴与M′,求出点M与M′坐标即可.详解:(1)设直线AB的解析式是y=kx+b,根据题意得:,解得:,则直线的解析式是:y=-x+6;(2)在y=-x+6中,令x=0,解得:y=6,S△OAC=×6×4=12;(3)如图,①过点A作AB的垂线AM交y轴与M.∵直线AB的解析式为y=-x+6,∴直线AM的解析式为y=x-2,∴M(0,-2).②过点B作BM′⊥AB交y轴与M′,则直线BM′的解析式为y=x-6,∴M′(0,-6),综上所述,满足条件的点M的坐标为(0,-2)或(0,-6).点睛:本题主要考查了用待定系数法求函数的解析式以及三角形面积求法等知识,学会用分类讨论的思想思考问题是解题关键.22、(1)B(6,0);(2)d=;(3)四边形是矩形,理由见解析【解析】
(1)作DL⊥y轴垂足为L点,DI⊥AB垂足为I,证明△DLC≌△AOC,求得D(2,12),再由S△ABD=AB•DI=1,求得OB=AB−AO=8−2=6,即可求B坐标;
(2)设∠MNB=∠MBN=α,作NK⊥x轴垂足为K,MQ⊥AB垂足为Q,MP⊥NK,垂足为P;证明四边形MPKQ为矩形,再证明△MNP≌△MQB,求出BD的解析式为y=−3x+18,MQ=d,把y=d代入y=−3x+18得d=−3x+18,表达出OQ的值,再由OQ=OK+KQ=t+d,可得d=−;
(3)作NW⊥AB垂足为W,证明△ANW≌△CAO,根据边的关系求得N(4,2);延长NW到Y,使NW=WY,作NS⊥YF,再证明△FHN≌△FSN,可得SF=FH=,NY=2+2=4;设YS=a,FY=FN=a+,在Rt△NYS和Rt△FNS中利用勾股定理求得FN;在Rt△NWF中,利用勾股定理求出WF=6,得到F(10,0);设GF交y轴于点T,设FN的解析式为y=px+q
(p≠0)把F(10,0)N(4,2)代入即可求出直线FN的解析式,联立方程组得到G点坐标;把G点代入得到y=x+3,可知R(4,0),证明△GRA≌△EFR,可得四边形AGFE为平行四边形,再由∠AGF=180°−∠CGF=90°,可证明平行四边形AGFE为矩形.【详解】解:(1)令x=0,y=6,令y=0,x=−2,
∴A(−2,0),B(0,6),
∴AO=2,CO=6,
作DL⊥y轴垂足为L点,DI⊥AB垂足为I,
∴∠DLO=∠COA=90°,∠DCL=∠ACO,DC=AC,
∴△DLC≌△AOC(AAS),
∴DL=AO=2,
∴D的横坐标为2,
把x=2代入y=3x+6得y=12,
∴D(2,12),
∴DI=12,
∵S△ABD=AB•DI=1,
∴AB=8;
∵OB=AB−AO=8−2=6,
∴B(6,0);
(2)∵OC=OB=6,
∴∠OCB=∠CBO=45°,
∵MN=MB,
∴设∠MNB=∠MBN=α,
作NK⊥x轴垂足为K,MQ⊥AB垂足为Q,MP⊥NK,垂足为P;
∴∠NKB=∠MQK=∠MPK=90°,
∴四边形MPKQ为矩形,
∴NK∥CO,MQ=PK;
∵∠KNB=90°−45°=45°,
∴∠MNK=45°+α,∠MBQ=45°+α,
∴∠MNK=∠MBQ,
∵MN=MB,∠NPM=∠MQB=90°,
∴△MNP≌△MQB(AAS),
∴MP=MQ;
∵B(6,0),D(2,12),
∴设BD的解析式为y=kx+b(k≠0),
∴,解得:k=-3,b=18,
∴BD的解析式为y=−3x+18,
∵点M的纵坐标为d,
∴MQ=MP=d,把y=d代入y=−3x+18得d=−3x+18,
解得x=,
∴OQ=;
∵N的横坐标为t,
∴OK=t,
∴OQ=OK+KQ=t+d,
∴=t+d,
∴d=;
(3)作NW⊥AB垂足为W,
∴∠NWO=90°,
∵∠ACN=45°+∠ACO,∠ANC=45°+∠NAO,
∵∠ACO=∠NAO,
∴∠ACN=∠ANC,
∴AC=AN,
又∵∠ACO=∠NAO,∠AOC=∠NOW=90°,
∴△ANW≌△CAO(AAS),
∴AO=NW=2,
∴WB=NW=2,
∴OW=OB−WB=6−2=4,
∴N(4,2);
延长NW到Y,使NW=WY,∴△NFW≌△YFW(SAS)∴NF=YF,∠NFW=∠YFW,
又∵∠HFN=2∠NFO,
∴∠HFN=∠YFN,
作NS⊥YF,
∵∠FH⊥NH,
∴∠H=∠NSF=90°,
∵FN=FN,
∴△FHN≌△FSN(AAS),
∴SF=FH=,NY=2+2=4,
设YS=a,FY=FN=a+,
在Rt△NYS和Rt△FNS中:NS2=NY2−YS2;NS2=FN2−FS2;NY2−YS2=FN2−FS2,
∴42−a2=(a+)2-()2,
解得a=
∴FN=;
在Rt△NWF中WF=,
∴FO=OW+WF=4+6=10,
∴F(10,0),
∴AW=AO+OW=2+4=6,
∴AW=FW,
∵NW⊥AF,
∴NA=NF,
∴∠NFA=∠NAF,
∵∠ACO=∠NAO,
∴∠NFA=∠ACO,
设GF交y轴于点T,∠CTF=∠ACO+∠CGF=∠COF+∠GFO,
∴∠CGF=∠COF=90°,
设FN的解析式为y=px+q
(p≠0),把F(10,0)N(4,2)代入y=px+q
得,解得,∴,∴联立,解得:,∴,
把G点代入y=mx+3,得,得m=,
∴y=x+3,
令y=0得0=x+3,x=4,
∴R(4,0),
∴AR=AO+OR=2+4=6,RF=OF−OR=10−4=6,
∴AR=RF,
∵FE∥AC,
∴∠FEG=∠AGE,∠GAF=∠EFA,
∴△GRA≌△EFR(AAS),
∴EF=AG,
∴四边形AGFE为平行四边形,
∵∠AGF=180°−∠CGF=180°−90°=90°,
∴平行四边形AGFE为矩形.【点睛】本题是一次函数的综合题;灵活应用全等三角形的判定和性质以及勾股定理,熟练掌握平行四边形和矩形的判定,会待定系数法求函数解析式是解题的关键.23、(1)二;(2)见解析.【解析】
(1)由垂直平分线性质可知,AC和EF并不是互相平分的,EF垂直平分AC,但AC并不平分EF,需要通过证明才可以得出,故第2步出现了错误;(2))根据
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度破桩工程绿色施工与节能减排合同4篇
- 水稳加工协议书(2篇)
- 6《探访古代文明》(说课稿)-统编版道德与法治六年级下册001
- 二零二五年环保咨询与评估服务协议
- 2025年度起诉离婚协议书定制与离婚后家庭关系维护
- 钼矿项目融资渠道探索
- 7《不甘屈辱奋勇抗争-圆明园的诉说》(说课稿)统编版道德与法治五年级下册001
- 2024-2025学年新教材高中政治 第二单元 人民当家作主 5.1 人民代表大会:我国的国家权力机关(2)说课稿 部编版必修3001
- 8《大卫·科波菲尔(节选)》说课稿 2024-2025学年统编版高中语文选择性必修上册
- 二零二五年度绿色节能型通风空调安装及售后服务合同
- 医院课件:《食源性疾病知识培训》
- 浙教版七年级数学下册单元测试题及参考答案
- 华为人才发展与运营管理
- 卓有成效的管理者读后感3000字
- 七年级下册-备战2024年中考历史总复习核心考点与重难点练习(统部编版)
- 岩土工程勘察服务投标方案(技术方案)
- 实验室仪器设备验收单
- 新修订药品GMP中药饮片附录解读课件
- 蒙特利尔认知评估量表北京版
- 领导干部个人有关事项报告表(模板)
- GB/T 7631.18-2017润滑剂、工业用油和有关产品(L类)的分类第18部分:Y组(其他应用)
评论
0/150
提交评论