2024年浙江省乐清市育英寄宿学校八年级数学第二学期期末统考试题含解析_第1页
2024年浙江省乐清市育英寄宿学校八年级数学第二学期期末统考试题含解析_第2页
2024年浙江省乐清市育英寄宿学校八年级数学第二学期期末统考试题含解析_第3页
2024年浙江省乐清市育英寄宿学校八年级数学第二学期期末统考试题含解析_第4页
2024年浙江省乐清市育英寄宿学校八年级数学第二学期期末统考试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024年浙江省乐清市育英寄宿学校八年级数学第二学期期末统考试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.一个多边形的每一个外角都等于,则这个多边形的边数等于()A.8 B.10 C.12 D.142.甲、乙两人分别骑自行车和摩托车从A地到B地,两人所行驶的路程与时间的关系如图所示,下面的四个说法:甲比乙早出发了3小时;乙比甲早到3小时;甲、乙的速度比是5:6;乙出发2小时追上了甲.其中正确的个数是A.1个 B.2个 C.3个 D.4个3.如图,菱形ABCD中,∠B=60°,AB=2cm,E,F分别是BC,CD的中点,连接AE,EF,AF,则△AEFA.23cm B.3cm C.44.已知:如图,在长方形ABCD中,AB=4,AD=1.延长BC到点E,使CE=2,连接DE,动点P从点B出发,以每秒2个单位的速度沿BC-CD-DA向终点A运动,设点P的运动时间为秒,当的值为_____秒时,△ABP和△DCE全等.A.1 B.1或3 C.1或7 D.3或75.若分式在实数范围内有意义,则实数x的取值范围是()A.x>﹣2 B.x<﹣2 C.x=﹣2 D.x≠﹣26.若bk>0,则直线y=kx-b一定通过()A.第一、二象限 B.第二、三象限 C.第三、四象限 D.第一、四象限7.甲、乙两家商场平时以同样价格出售相同的商品,春节期间两家商场都让利酬宾,如图是购买甲、乙两家商场该商品的实际金额、(元)与原价(元)的函数图象,下列说法正确的是()A.当时,选甲更省钱 B.当时,甲、乙实际金额一样C.当时,选乙更省钱 D.当时,选甲更省钱8.平行四边形具有的特征是()A.四个角都是直角 B.对角线相等C.对角线互相平分 D.四边相等9.如图,E,F分别是▱ABCD的边AD、BC上的点,EF=6,∠DEF=60°,将四边形EFCD沿EF翻折,得到EFC′D′,ED′交BC于点G,则△GEF的周长为()A.9 B.12 C.9 D.1810.下列条件中,不能判定四边形是平行四边形的是()A.对角线互相平分 B.两组对边分别相等C.对角线互相垂直 D.一组对边平行,一组对角相等二、填空题(每小题3分,共24分)11.函数自变量的取值范围是_________________.12.比较大小:_____.13.当m=____时,关于x的分式方程无解.14.若代数式有意义,则实数的取值范围______________15.如图,已知:∠MON=30°,点A1、A2、A3在射线ON上,点B1、B2、B3…在射线OM上,△A1B1A2、△A2B2A3、△A3B3A4…均为等边三角形,若OA1=a,则△A6B6A7的边长为______.16.自2019年5月30日万州牌楼长江大桥正式通车以来,大放光彩,引万人驻足.市民们纷纷前往打卡、拍照留念,因此牌楼长江大桥成为了万州网红打卡地.周末,小棋和小艺两位同学相约前往参观,小棋骑自行车,小艺步行,她们同时从学校出发,沿同一条路线前往,出发一段时间后小棋发现东西忘了,于是立即以原速返回到学校取,取到东西后又立即以原速追赶小艺并继续前往,到达目的地后等待小艺一起参观(取东西的时间忽略不计),在整个过程两人保持匀速,如图是两人之间的距离与出发时间之间的函数图象如图所示,则当小棋到达目的地时,小艺离目的地还有______米.17.如图,在中,,交于点,,若,则__________.18.已知:正方形,为平面内任意一点,连接,将线段绕点顺时针旋转得到,当点,,在一条直线时,若,,则________.三、解答题(共66分)19.(10分)如图,点E是正方形ABCD的BC延长线上一点,连接ED,过点B作交ED的延长线于点F,连接CF.(1)若,,求BF的长;(2)求证:.20.(6分)(1)化简:;(2)先化简,再求值:,选一个你喜欢的数求值.21.(6分)已知BD垂直平分AC,∠BCD=∠ADF,AF⊥AC,(1)证明ABDF是平行四边形;(2)若AF=DF=5,AD=6,求AC的长.22.(8分)如图,将矩形纸片()折叠,使点刚好落在线段上,且折痕分别与边,相交于点,,设折叠后点,的对应点分别为点,.(1)判断四边形的形状,并证明你的结论;(2)若,且四边形的面积,求线段的长.23.(8分)如图,已知菱形ABCD的对角线AC,BD相交于点O,过C作CE⊥AC,交AB的延长线于点E.(1)求证:四边形BECD是平行四边形;(2)若∠E=50°,求∠DAB的度数.24.(8分)如图,已知正方形ABCD的对角线AC、BD交于点O,CE⊥AC与AD边的延长线交于点E.(1)求证:四边形BCED是平行四边形;(2)延长DB至点F,联结CF,若CF=BD,求∠BCF的大小.25.(10分)若关于x的分式方程=﹣2的解是非负数,求a的取值范围.26.(10分)为加快城市群的建设与发展,在A、B两城市间新建一条城际铁路,建成后,铁路运行里程由现在的210km缩短至180km,平均时速要比现行的平均时速快200km,运行时间仅是现行时间的,求建成后的城际铁路在A、B两地的运行时间?

参考答案一、选择题(每小题3分,共30分)1、B【解析】

多边形的外角和是固定的360°,依此可以求出多边形的边数.【详解】∵一个多边形的每一个外角都等于36°,∴多边形的边数为360°÷36°=1.故选B.【点睛】本题主要考查了多边形的外角和定理:多边形的外角和是360°,已知多边形的外角求多边形的边数是一个考试中经常出现的问题.2、B【解析】分析:根据函数图象中所提供的信息进行分析判断即可.详解:(1)由图中信息可知,乙是在甲出发3小时后出发的,所以结论①正确;(2)由图中信息可知,甲是在乙到达终点3小时后到达的,所以结论②正确;(3)由题中信息可得:V甲=80÷8=10(km/小时)V乙=80÷2=40(km/小时),由此可得:V甲:V乙=1:4,所以结论③错误;(4)由图中信息和(3)中所求甲和乙的速度易得,乙出发后1小时追上甲,所以结论④不成立.综上所述,4个结论中正确的有2个.故选B.点睛:读懂题意,能够从函数图象中获取相关数据信息是解答本题的关键.3、D【解析】

首先根据菱形的性质证明△ABE≌△ADF,然后连接AC可推出△ABC以及△ACD为等边三角形.根据等边三角形三线合一的性质又可推出△AEF是等边三角形.根据勾股定理可求出AE的长,继而求出周长.【详解】解:∵四边形ABCD是菱形,∴AB=AD=BC=CD=2cm,∠B=∠D,∵E、F分别是BC、CD的中点,∴BE=DF,在△ABE和△ADF中,AB=AD∠B∴△ABE≌△ADF(SAS),∴AE=AF,∠BAE=∠DAF.连接AC,∵∠B=∠D=60°,∴△ABC与△ACD是等边三角形,∴AE⊥BC,AF⊥CD,∴∠BAE=∠DAF=30°,∴∠EAF=60°,BE=12AB=1cm∴△AEF是等边三角形,AE=AB2∴周长是33故选:D.【点睛】本题主要考查了菱形的性质、全等三角形的判定和性质、等边三角形的判定和性质以及勾股定理,涉及知识点较多,也考察了学生推理计算的能力.4、C【解析】

分两种情况进行讨论,根据题意得出BP=2t=2和AP=11-2t=2即可求得.【详解】解:因为AB=CD,若∠ABP=∠DCE=90°,BP=CE=2,根据SAS证得△ABP≌△DCE,

由题意得:BP=2t=2,

所以t=1,

因为AB=CD,若∠BAP=∠DCE=90°,AP=CE=2,根据SAS证得△BAP≌△DCE,

由题意得:AP=11-2t=2,

解得t=2.

所以,当t的值为1或2秒时.△ABP和△DCE全等.

故选C.【点睛】本题考查全等三角形的判定,判定方法有:ASA,SAS,AAS,SSS,HL.5、D【解析】

直接利用分式有意义的条件分析得出答案.【详解】∵代数式在实数范围内有意义,∴x+2≠0,解得:x≠﹣2,故选D.【点睛】本题主要考查了分式有意义的条件,熟练掌握分母不为0时分式有意义是解题的关键.6、D【解析】

根据题意讨论k和b的正负情况,然后可得出直线y=kx-b一定通过哪两个象限.【详解】解:由bk>0,知,①b>0,k>0;②b<0,k<0;①b>0,k>0时,直线经过第一、三、四象限,②b<0,k<0时,直线经过第一、二、四象限.综上可得,函数一定经过一、四象限.故选:D.【点睛】本题主要考查一次函数图象在坐标平面内的位置与k、b的关系.解答本题注意理解:直线y=kx+b所在的位置与k、b的符号有直接的关系.k>0时,直线必经过一、三象限.k<0时,直线必经过二、四象限.b>0时,直线与y轴正半轴相交.b=0时,直线过原点;b<0时,直线与y轴负半轴相交.7、D【解析】

根据函数图象和图象中的数据可知原价时,函数在上方,花费较贵,故乙商场较划算;当x=600时==480,甲乙商场花费一样;当时函数在上方,花费较贵,故甲商场较划算【详解】据函数图象和图象中的数据可知原价时,函数在上方,花费较贵,故乙商场较划算;当x=600时==480,甲乙商场花费一样;当时函数在上方,花费较贵,故甲商场较划算A.当时,选乙更省钱,故A选项错误;B.当时,选乙更省钱,故B选项错误;C.当时,甲、乙实际金额一样,故C选项错误;D.当时,选甲更省钱,故D选项正确;故答案为:D【点睛】本题考查了一次函数与方案选择问题,能够正确看懂函数图像,进行选择方案是解题的关键.8、C【解析】

根据平行四边形的性质进行选择.【详解】平行四边形对角线互相平分,对边平行且相等,对角相等.故选C【点睛】本题考核知识点:平行四边形性质.解题关键点:熟记平行四边形性质.9、D【解析】

根据平行四边形的性质得到AD∥BC,由平行线的性质得到∠AEG=∠EGF,根据折叠的想知道的∠GEF=∠DEF=60°,推出△EGF是等边三角形,于是得到结论【详解】ABCD为平行四边形,所以,AD∥BC,所以,∠AEG=∠EGF,由折叠可知:∠GEF=∠DEF=60°,所以,∠AEG=60°,所以,∠EGF=60°,所以,三有形EGF为等边三角形,因为EF=6,所以,△GEF的周长为18【点睛】此题考查翻折变换(折叠问题),平行四边形的性质,解题关键在于得出∠GEF=∠DEF=60°10、C【解析】

利用平行四边形的判定可求解.【详解】A、对角线互相平分的四边形是平行四边形,故该选项不符合题意;B、两组对边分别相等的四边形是平行四边形,故该选项不符合题意;C、对角线互相垂直的四边形不一定是平行四边形,故该选项符合题意;D、一组对边平行,一组对角相等,可得另一组对角相等,由两组对角相等的四边形是平行四边形,故该选项不符合题意;故选C.【点睛】本题考查了平行四边形的判定,熟练掌握平行四边形的判定是本题的关键.二、填空题(每小题3分,共24分)11、【解析】

根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x的范围.【详解】根据题意得:2x+1>0,解得:.

故答案为:.【点睛】函数自变量的范围一般从三个方面考虑:

(1)当函数表达式是整式时,自变量可取全体实数;

(2)当函数表达式是分式时,考虑分式的分母不能为0;

(3)当函数表达式是二次根式时,被开方数非负.12、<【解析】

先算−、-的倒数值,再比较−、-的值,判断即可.【详解】∵,,∵+2>+2,∴-<-,故答案为<.【点睛】本题考查了实数大小比较法则,任意两个实数都可以比较大小.根据两正数比较倒数大的反而小得出是解题关键.13、-6【解析】把原方程去分母得,2x+m=-(x-3)①,把x=3代入方程①得,m=-6,故答案为-6.14、【解析】

根据二次根式有意义的条件列出不等式,解不等式即可.【详解】解:由题意得,x﹣1≥0,解得:x≥1故答案为:x≥1.【点睛】本题考查的是二次根式有意义的条件,掌握二次根式中的被开方数必须是非负数是解题的关键.15、32a【解析】

根据等腰三角形的性质以及平行线的性质得出A1B1∥A2B2∥A3B3,以及A2B2=2B1A2,得出A3B3=4B1A2=4,A4B4=8B1A2=8,A5B5=16B1A2…进而得出答案.【详解】如图所示:∵△A1B1A2是等边三角形,

∴A1B1=A2B1,∠3=∠4=∠12=60°,

∴∠2=120°,

∵∠MON=30°,

∴∠1=180°-120°-30°=30°,

又∵∠3=60°,

∴∠5=180°-60°-30°=90°,

∵∠MON=∠1=30°,

∴OA1=A1B1=a,

∴A2B1=a,

∵△A2B2A3、△A3B3A4是等边三角形,

∴∠11=∠10=60°,∠13=60°,

∵∠4=∠12=60°,

∴A1B1∥A2B2∥A3B3,B1A2∥B2A3,

∴∠1=∠6=∠7=30°,∠5=∠8=90°,

∴A2B2=2B1A2,B3A3=2B2A3,

∴A3B3=4B1A2=4a,

A4B4=8B1A2=8a,

A5B5=16B1A2=16a,

以此类推:A6B6=32B1A2=32a.

故答案是:32a.【点睛】考查了等边三角形的性质以及等腰三角形的性质,根据已知得出A3B3=4B1A2,A4B4=8B1A2,A5B5=16B1A2进而发现规律是解题关键.16、400【解析】

设小祺的速度为x米/分钟,小艺的速度为y米/分钟,由题意列方程组,可求出小祺的速度与小艺的速度.【详解】设小祺的速度为x米/分钟,小艺的速度为y米/分钟则有:∴∴设小祺的速度为130米/分钟,小艺的速度为70米/分钟∴当小祺到达目的地时,小艺离目的地的距离=米故答案为:400米【点睛】本题考查了一次函数与一元一次方程的应用,关键是把条件表述的几个过程对应图象理解,再找出对应数量关系.17、1【解析】

利用角平线性质和已知条件求得两三角形全等,求得EC=ED,从而解得.【详解】题目可知BC=BD,

∠ECB=∠EDB=90°,

EB=EB,

∴△ECB≌△EDB(HL),

∴EC=ED,

∴AE+DE=AE+EC=AC=1.故答案为:1.【点睛】此题考查角平分线运用性质的应用,全等三角形的判定与性质,解题关键在于掌握判定定理.18、或【解析】

分两种情况讨论:(1)当点G在线段BD上时,如下图连接EG交CD于F;(2)当点G在线段BD的延长线上时,如下图连接EG交CD的延长线于F.根据两种情况分别画出图形,证得是等腰直角三角形,求出DF=EF=2,然后在直角三角形ECF中利用勾股定理即可求出CE的长.【详解】解:分两种情况讨论:(1)当点G在线段BD上时,如下图连接EG交CD于F∵ABCD是正方形∴CD=AD=4∵线段绕点顺时针旋转得到∴是等腰直角三角形,DE=DG=∴DF=EF=2∴CF=CD-DF=4-2=2∴CE=(2)当点G在线段BD的延长线上时,如下图连接EG交CD的延长线于F∵ABCD是正方形∴CD=AD=4∵线段绕点顺时针旋转得到∴是等腰直角三角形,DE=DG=∴DF=EF=2∴CF=CD+DF=4+2=6∴CE=综上所述,CE的长为或【点睛】本题考查了正方形的性质、旋转的性质及等腰直角三角形的性质,通过旋转证得是等腰直角三角形进行有关的计算是解题的关键.三、解答题(共66分)19、(1);(2)见解析.【解析】

(1)由直角三角形的性质可求CD=4=BC,再由直角三角形的性质可求BF的长;(2)过点C作CG⊥CF,交DE于点G,通过证明△FBC≌△GDC,可得FC=CG,BF=DG,即可得结论.【详解】解:(1)正方形ABCD中:,,∵∵∴∴∴∴∴∴(2)证明:过点C作交DE于G∴∴又∵∴在四边形BCDF中∵∴∵∴∴,∴在中.∴【点睛】本题考查了正方形的性质,全等三角形的判定和性质,添加恰当辅助线构造全等三角形是本题的关键.20、(1);(2)选时,3.【解析】

(1)分别利用完全平方公式和平方差公式进行化简,再约分即可(2)首先将括号里面通分,再将分子与分母分解因式进而化简得出答案【详解】解:(1)原式(2)原式,∵∴可选时,原式.(答案不唯一)【点睛】此题考查分式的化简求值,掌握运算法则是解题关键21、(1)证明见解析;(2).【解析】

(1)先证得△ADB≌△CDB求得∠BCD=∠BAD,从而得到∠ADF=∠BAD,所以AB∥FD,因为BD⊥AC,AF⊥AC,所以AF∥BD,即可证得.(2)先证得平行四边形是菱形,然后根据勾股定理即可求得.【详解】(1)证明:∵BD垂直平分AC,∴AB=BC,AD=DC,在△ADB与△CDB中,,∴△ADB≌△CDB(SSS)∴∠BCD=∠BAD,∵∠BCD=∠ADF,∴∠BAD=∠ADF,∴AB∥FD,∵BD⊥AC,AF⊥AC,∴AF∥BD,∴四边形ABDF是平行四边形,(2)解:∵四边形ABDF是平行四边形,AF=DF=5,∴▱ABDF是菱形,∴AB=BD=5,∵AD=6,设BE=x,则DE=5-x,∴AB2-BE2=AD2-DE2,即52-x2=62-(5-x)2解得:x=,∴,∴AC=2AE=.考点:1.平行四边形的判定;2.线段垂直平分线的性质;3.勾股定理.22、(1)四边形为菱形,理由见解析;(2)【解析】

(1)根据折叠的性质可得EC=EG,GF=CF,,由GF∥EC,可得,进一步可得GE=GF,于是可得结论;(2)根据题意可先求得CE的长,过点E作EK⊥GF于点K,在Rt△GEK中,根据勾股定理可求得GK的长,于是FK可求,在Rt△EFK中,再利用勾股定理即可求得结果.【详解】(1)四边形为菱形,理由如下:证明:由折叠可得:,,,又∵,∴,∴,∴,∴,∴四边形为菱形.(2)如图,∵四边形为菱形,且其面积为,∴,∴,过点E作EK⊥GF于点K,则EK=AB=4,在Rt△GEK中,由勾股定理得:,∴,在Rt△EFK中,由勾股定理得:.【点睛】本题考查了矩形的性质、折叠的性质、菱形的判定方法和勾股定理等知识,知识点虽多,但难度不大,熟练掌握折叠的性质、菱形的判定方法和勾股定理是解题的关键.23、(1)证明见解析;(2)∠DAB=80°.【解析】

直接利用菱形的性质对角线互相垂直,得出,进而得出答案;

利用菱形、平行四边形的性质得出,进而利用三角形内角和定理得出答案.【详解】(1)证明:∵四边形ABCD是菱形,∴AC⊥BD,DC∥BE,又∵CE⊥AC,∴BD∥EC,∴四边形BECD是平行四边形;(2)解:

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论