2024年山东省潍坊市诸城龙源学校八年级下册数学期末调研试题含解析_第1页
2024年山东省潍坊市诸城龙源学校八年级下册数学期末调研试题含解析_第2页
2024年山东省潍坊市诸城龙源学校八年级下册数学期末调研试题含解析_第3页
2024年山东省潍坊市诸城龙源学校八年级下册数学期末调研试题含解析_第4页
2024年山东省潍坊市诸城龙源学校八年级下册数学期末调研试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024年山东省潍坊市诸城龙源学校八年级下册数学期末调研试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.如图,菱形ABCD的对角线AC、BD相交于点O,过点C作CE⊥AD于点E,连接OE,若OB=8,S菱形ABCD=96,则OE的长为()A.2 B.2 C.6 D.82.下列图象中不可能是一次函数的图象的是()A. B. C. D.3.若a是(﹣4)2的平方根,b的一个平方根是2,则a+b的立方根为()A.0 B.2 C.0或2 D.0或﹣24.下列二次根式中,是最简二次根式的是().A. B. C. D.5.一列快车从甲地驶往乙地,一列特快车从乙地驶往甲地,快车的速度为100千米/小时,特快车的速度为150千米/小时,甲乙两地之间的距离为1000千米,两车同时出发,则图中折线大致表示两车之间的距离(千米)与快车行驶时间t(小时)之间的函数图象是A. B.C. D.6.如图,在菱形中,,的垂直平分线交对角线于点,为垂足,连结,则等于()A. B. C. D.7.一次函数的图象如图所示,将直线向下平移若干个单位后得直线,的函数表达式为.下列说法中错误的是()A. B. C. D.当时,8.如图,在Rt△ABC中,∠C=90°,AB=2BC,则∠A=()A.15° B.30° C.45° D.60°9.若=,则的值是()A. B. C. D.10.如图,四边形和四边形都是正方形,边在轴上,边在轴上,点在边上,反比例函数,在第二象限的图像经过点,则正方形与正方形的面积之差为()A.6 B.8 C.10 D.1211.菱形具有而平行四边形不具有的性质是()A.对角线互相垂直 B.对边平行C.对边相等 D.对角线互相平分12.如图,在中,对角线,相交于点,点分别是边的中点,交与点,则与的比值是()A. B. C. D.二、填空题(每题4分,共24分)13.评定学生的学科期末成绩由考试分数,作业分数,课堂参与分数三部分组成,并按3:2:5的比例确定,已知小明的数学考试80分,作业95分,课堂参与82分,则他的数学期末成绩为_____.14.直线y=3x﹣1向上平移4个单位得到的直线的解析式为:_____.15.如图,正方形ABCD的顶点C,A分别在x轴,y轴上,BC是菱形BDCE的对角线.若BC6,BD5,则点D的坐标是_____.16.如图是一辆慢车与一辆快车沿相同路线从地到地所行的路程与时间之间的函数图象,已知慢车比快车早出发小时,则、两地的距离为________

.17.如图,在平行四边形ABCD中,BE平分∠ABC,交AD于点E,AB=3cm,ED=cm,则平行四边形ABCD的周长是_________.18.在从小到大排列的五个整数中,中位数是2,唯一的众数是4,则这五个数和的最大值是__________.三、解答题(共78分)19.(8分)如图,在矩形ABCD中,AE平分∠BAD,交BC于点E,过点E作EF⊥AD于点F,求证:四边形ABEF是正方形.20.(8分)如图,一次函数y=k2x+b的图象与y轴交于点B,与正比例函数y=k1x的图象相交于点A(4,3),且OA=OB.(1)分别求出这两个函数的解析式;(2)求△AOB的面积;21.(8分)益群精品店以转件21元的价格购进一批商品,该商品可以白行定价,若每件商B品位价a元,可卖出(350-10a)件,但物价局限定每件商品的利润率不得超过20%,商店计划要盈利400元,求每件商品应定价多少元?22.(10分)某水厂为了了解小区居民的用水情况,随机抽查了小区10户家庭的月用水量,结果如下表:月用水量()1013141718户数22321如果小区有500户家庭,请你估计小区居民每月(按30天计算)共用水多少立方米?(答案用科学记数法表示)23.(10分)如图,在中,,请用尺规过点作直线,使其将分割成两个等腰三角形.(保留作图痕迹,不写作法.并把作图痕迹用黑色签字笔加黑).24.(10分)已知一次函数与正比例函数都经过点,的图像与轴交于点,且.(1)求与的解析式;(2)求⊿的面积.25.(12分)已知一次函数.(1)在平面直角坐标系中画出该函数的图象;(2)点(,5)在该函数图象的上方还是下方?请做出判断并说明理由.26.在某旅游景区上山的一条小路上,有一些断断续续的台阶,下图是其中的甲、乙两段台阶的示意图(图中的数字表示每一级台阶的高度,单位cm).已知数据15、16、16、14、14、15的方差S甲2=,数据11、15、18、17、10、19的方差S乙2=.请你用学过的统计知识(平均数、中位数、方差和极差)通过计算,回答下列问题:(1)两段台阶路有哪些相同点和不同点?(2)哪段台阶路走起来更舒服?为什么?(3)为方便游客行走,需要重新整修上山的小路.对于这两段台阶路,在台阶数不变的情况下,请你提出合理的整修建议.

参考答案一、选择题(每题4分,共48分)1、C【解析】

由菱形的性质得出BD=16,由菱形的面积得出AC=12,再由直角三角形斜边上的中线性质即可得出结果.【详解】∵四边形ABCD是菱形,∴OA=OC,OB=OD=BD,BD⊥AC,∴BD=16,∵S菱形ABCD═AC×BD=96,∴AC=12,∵CE⊥AD,∴∠AEC=90°,∴OE=AC=6,故选C.【点睛】此题主要考查了菱形的性质、直角三角形斜边上的中线性质;熟练掌握菱形的性质是解题的关键.2、C【解析】分析:分别根据四个答案中函数的图象求出m的取值范围即可.详解:A.由函数图象可知:,解得:1<m<3;B.由函数图象可知,解得:m=3;C.由函数图象可知:,解得:m<1,m>3,无解;D.由函数图象可知:,解得:m<1.故选C.点睛:本题比较复杂,解答此题的关键是根据各选项列出方程组,求出无解的一组.3、C【解析】

先依据平方根的定义和性质求得a,b的值,然后依据有理数的加法法则求解,再求立方根即可解答【详解】∵(﹣4)2=16,∴a=±4,∵b的一个平方根是2,∴b=4,当a=4时,∴a+b=8,∴8的立方根是2,当a=﹣4时,∴a+b=0,∴0的立方根是0,故选:C.【点睛】此题考查了平方根和立方根,解题关键在于求出a,b的值4、A【解析】

检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【详解】A、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故正确;

B、=0,故错误;

C、=1,故错误;

D、=3,故错误;

故选:A.【点睛】考查最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.5、C【解析】分三段讨论:①两车从开始到相遇,这段时间两车距迅速减小;②相遇后向相反方向行驶至特快到达甲地,这段时间两车距迅速增加;③特快到达甲地至快车到达乙地,这段时间两车距缓慢增大;结合图象可得C选项符合题意.故选C.6、D【解析】

连接BF,根据菱形的对角线平分一组对角求出∠BAC,∠BCF=∠DCF,四条边都相等可得BC=DC,再根据菱形的邻角互补求出∠ABC,然后根据线段垂直平分线上的点到线段两端点的距离相等可得AF=BF,根据等边对等角求出∠ABF=∠BAC,从而求出∠CBF,再利用“边角边”证明△BCF和△DCF全等,根据全等三角形对应角相等可得∠CDF=∠CBF.【详解】解:如图,连接BF,在菱形ABCD中,∠BAC=∠BAD=×80°=40°,∠BCF=∠DCF,BC=DC,∠ABC=180°-∠BAD=180°-80°=100°,∵EF是线段AB的垂直平分线,∴AF=BF,∠ABF=∠BAC=40°,∴∠CBF=∠ABC-∠ABF=100°-40°=60°,∵在△BCF和△DCF中,,∴△BCF≌△DCF(SAS),∴∠CDF=∠CBF=60°,故选:D.【点睛】本题考查了菱形的性质,全等三角形的判定与性质,线段垂直平分线上的点到线段两端点的距离相等的性质,综合性强,但难度不大,熟记各性质是解题的关键.7、B【解析】

根据两函数图象平行k相同,以及平移规律“左加右减,上加下减”即可判断【详解】∵将直线向下平移若干个单位后得直线,∴直线∥直线,∴,∵直线向下平移若干个单位后得直线,∴,∴当时,故选B.【点睛】本题考查图形的平移变换和函数解析式之间的关系,在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标左移加,右移减;纵坐标上移加,下移减.平移后解析式有这样一个规律“左加右减,上加下减”.关键是要搞清楚平移前后的解析式有什么关系.8、B【解析】

逆用直角三角形的性质:30度角所对的直角边等于斜边的一半,即可得出答案.【详解】在Rt△ABC中,∵∠C=90°,AB=2BC,∴∠A=30°.故选B.【点睛】本题考查了直角三角形的性质.熟练应用直角三角形的性质:30度角所对的直角边等于斜边的一半是解题的关键.9、A【解析】

先设a=2k,则b=5k,然后将它们分别代入,计算即可求出其值即可.【详解】解:∵=,设a=2k,则b=5k,

∴=.

故选A.【点睛】本题考查了比例的基本性质,比较简单,关键是巧设未知数,可使计算简便.10、B【解析】

设正方形AOBC的边长为a,正方形CDEF的边长为b,则E(a-b,a+b),根据E在反比例函数上得到(a+b)(a-b)=8,再求出S正方形AOBC=a2,S正方形CDEF=b2,即可求出面积之差.【详解】设正方形AOBC的边长为a,正方形CDEF的边长为b,则E(a-b,a+b),∵E在反比例函数上∴(a+b)(a-b)=8,即a2-b2=8∴S正方形AOBC-S正方形CDEF=a2-b2=8故选B.【点睛】此题主要考查反比例函数的图像,解题的关键是根据题意找到E点坐标.11、A【解析】

根据菱形及平行四边形的性质,结合选项即可得出答案.【详解】A、对角线互相垂直是菱形具有,平行四边形不具有的性质,故本选项正确;B、对边平行是菱形和平行四边形都具有的性质,故本选项错误;C、对边相等是菱形和平行四边形都具有的性质,故本选项错误;D、对角线互相平分是菱形和平行四边形都具有的性质,故本选项错误.故选A.【点睛】此题考查了平行四边形及菱形的性质,属于基础题,关键是熟练掌握特殊图形的基本性质.12、C【解析】

由四边形ABCD是平行四边形,可得OA=OC,又由点E,F分别是边AD,AB的中点,可得AH:AO=1:2,即可得AH:AC=1:4,继而求得答案.【详解】解:∵四边形ABCD是平行四边形,

∴OA=OC,

∵点E,F分别是边AD,AB的中点,

∴EF∥BD,

∴△AFH∽△ABO,

∴AH:AO=AF:AB,故选:C【点睛】此题考查了平行四边形的性质、三角形中位线的性质以及相似三角形的判定与性质.此题难度适中,注意掌握数形结合思想的应用.二、填空题(每题4分,共24分)13、:84分【解析】

因为数学期末成绩由考试分数,作业分数,课堂参与分数三部分组成,并按3:2:5的比例确定,所以利用加权平均数的公式即可求出答案.【详解】解:小明的数学期末成绩为=84(分),故答案为84分.【点睛】本题主要考查了加权平均数的概念.平均数等于所有数据的和除以数据的个数.14、y=1x+1.【解析】

根据平移k不变,b值加减即可得出答案.【详解】y=1x-1向上平移4个单位则:y=1x-1+4=1x+1,故答案为:y=1x+1.【点睛】本题考查图形的平移变换和函数解析式之间的关系,平移后解析式有这样一个规律“左加右减,上加下减”.15、10,3.【解析】

过点D作DG⊥BC于点G,根据四边形BDCE是菱形可知BD=CD,可得出△BCD是等腰三角形,即可得到CG=12BC,再根据勾股定理求出【详解】过点D作DG⊥BC于点G,∵四边形BDCE是菱形,∴BD=CD,∴△BCD是等腰三角形,∴点G是BC的中点,∴CG=1∴GD=C∵四边形ABCD是正方形,∴AB=BC=6,6+4=10,∴D10,3故答案为:10,3.【点睛】本题考查的是正方形的性质,根据题意作出辅助线,利用菱形的性质判断出△BCD是等腰三角形是解题的关键.16、1【解析】分析:根据数量关系“路程=速度×时间”结合函数图象,即可得出v快=v慢,设两车相遇的时间为t,根据数量关系“路程=速度×时间”即可得出t•v慢=(t-2)•v快=276,解之即可得出t与v慢的值,将慢车的速度代入s=18v慢中即可求出A、B两地的距离.详解:根据函数图象可知:s=(14-2)v快=18v慢,

∴v快=v慢.

设两车相遇的时间为t,

根据函数图象可知:t•v慢=(t-2)•v快=276,

解得:t=6,v慢=46,

∴s=18v慢=18×46=1.

故答案为1.点睛:考查了函数的图象以及解一元一次方程,根据数量关系结合函数图象找出快、慢两车速度间的关系是解题的关键.17、15cm【解析】分析:由平行四边形ABCD得到AB=CD,AD=BC,AD∥BC,再和已知BE平分∠ABC,进一步推出∠ABE=∠AEB,即AB=AE=3,即可求出AD的长,就能求出答案.详解:∵四边形ABCD是平行四边形,∴AB=CD=3cm,AD=BC,AD∥BC,∴∠AEB=∠EBC,∵BE平分∠ABC,∴∠ABE=∠EBC,∴∠ABE=∠AEB,∴AB=AE=3,∴AD=AE+DE=3+=4.5,∴AD=BC=4.5,∴平行四边形的周长是2(AB+BC)=2(3+4.5)=15(cm).故答案为:15cm.点睛:本题主要考查了平行四边形的性质,在平行四边形中,当出现角平分线时,一般可构造等腰三角形,进而利用等腰三角形的性质解题.18、2【解析】

根据中位数和众数的定义分析可得答案.【详解】解:因为五个整数从小到大排列后,其中位数是2,这组数据的唯一众数是1.

所以这5个数据分别是x,y,2,1,1,且x<y<2,

当这5个数的和最大时,整数x,y取最大值,此时x=0,y=1,

所以这组数据可能的最大的和是0+1+2+1+1=2.

故答案为:2.【点睛】主要考查了根据一组数据的中位数来确定数据的能力.将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.注意:找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求.如果是偶数个则找中间两位数的平均数.三、解答题(共78分)19、证明见解析.【解析】

由矩形的性质得出,,证出四边形是矩形,再证明,即可得出四边形是正方形;【详解】证明:四边形是矩形,,,,,四边形是矩形,平分,,,,四边形是正方形.【点睛】本题考查了矩形的性质与判定、正方形的判定与性质等知识;熟练掌握矩形的性质,证明四边形是正方形是解决问题的关键.20、(1)y=x,y=2x-5(2)10【解析】

(1)根据A点坐标即可求出y=k1x,由OA=OB得到B点坐标,即可求出一次函数y=k2x+b的关系式;(2)根据坐标与三角形的面积公式即可求解.【详解】(1)把A代入y=k1x,求出k1=∴直线OA为y=x∵OA==5,OA=OB∴B(0,-5)把A(4,3),B(0,-5)代入y=k2x+b求得k2=2,b=-5∴直线AB为y=2x-5(2)S△AOB=【点睛】此题主要考查一次函数的图像,解题的关键是数轴一次函数与几何的应用.21、需要进货100件,每件商品应定价25元【解析】

根据:每件盈利×销售件数=总盈利额;其中,每件盈利=每件售价-每件进价.建立等量关系.【详解】解:依题意(a-21)(350-10a)=400,整理得:a2-56a+775=0,解得a1=25,a2=1.∵21×(1+20%)=25.2,∴a2=1不合题意,舍去.∴350-10a=350-10×25=100(件).答:需要进货100件,每件商品应定价25元.【点睛】本题考查了一元二次方程的应用,注意需要检验结果是否符合题意.22、该小区居民每月共用水约为立方米.【解析】

根据平均数的概念计算,并用样本平均数去计算该小区居民每月用水量.【详解】解:由已知得:10户家庭平均每户月用水量为(立方米)答:该小区居民每月共用水约为立方米.【点睛】考查了平均数的计算和用样本估计总体的知识,解题关键是抓住用样本平均数去计算该小区居民每月用水量.23、见解析【解析】

作斜边AB的中垂线可以求得中点D,连接CD,根据直角三角形斜边上的中线等于斜边的一半,可得CD=AD=DB.【详解】解如图所示:,△ACD和△CDB即为所求.【点睛】此题主要考查了应用设计与作图,关键在于用中垂线求得中点和运用直角三角形中,斜边上的中线等于斜边的一半,把Rt△ABC分割成两个等腰三角形.24、(1)或;⊿的面积为15个平方单位.【解析】分析:本题的⑴求正比例函数解析式可通过来解决.而要求的解析式则还需要一个点的坐标,这个通过来解决;⑵问通过结合⑴问的坐标来确定⊿解底边长和高长,利用三角形的面积公式求解.详解:⑴.∵正比例函数过点;∴解得:∴根据勾股定理可求设点的坐标为.又∵,则解得或∴点的坐标为或又∵一次函数同时也

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论