版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
PAGE
1
JavaV.S.PythoninAI
FinalMasterThesis–HighPerformanceComputing
MasterinInnovationandResearchinInformaticsFacultatd’inform`aticadeBarcelonaUniversitatPolit`ecnicadeCatalunya
Author:
MarcoM.AguadoAcevedo
marcoaguado95@
Supervisors:MarisaGilGómez
marisa.gil@
October28,2021
PAGE
10
Acknowledgements
Firstandforemost,IwouldliketousethissectiontothankprofessorMarisaGilfortheopportunityshegavetometoworkonthisinterestingproject.
IwouldalsoliketothankprofessorXavierforprovidingmeaccesstotheCTE-ARMsystemoftheBSCandforprovidingadviceregardingtheanalysisandtheexecutionprocess.
NotonlydoIwanttoexpressmygratitudetowardsthemfortheunconditionalsupport,butalsofortheirpatienceandkindness.
Icannotendthisnotewithoutthankingmywholefamily,especiallymyparentsandaunt,whosup-portedmethroughoutnotonlymyacademiccareerbutalsomylife.
Abstract
Java’spositionasanappealingprogramminglanguagefordevelopingAIsoftwareisnotclearinthecurrentresearcharea.Itiswell-stablishedthatotherprogramminglanguagessuchasPythonhavegrowninpopularityintheAIresearchcommunityasaneasytolearn,easytouseandsimplecodetooloverthemorestrictandcomplexlanguagessuchasJava.Also,withtheincreaseinthenumberofprocessorswithARMarchitectureusedforserverpurposesduetotheirbetterenergyefficiency,theinterestintheirperformanceforspecificresearchareasalsoincreases.Thisthesisaimstoprovideanobjectiveandup-to-dateviewofJava’scurrentsituationinthisareabycomparingitwithPythonbothintermsofthecodingprocessandtheirperformance.
TotestifJavacouldprovemorevaluetoresearchersthanPython,asetofrepresentativeAIalgorithmswereimplementedinbothlanguagesusingthenowadaysmostusedlibraries:WekaforJavaandScikit-learn,PandasandNumpyforPythonandexecutedintwodifferentmachinesfromtheMareNostrum4system:TheIntelmachinewithx86architectureprocessorsandtheCTE-ARMmachinewithARMarchitectureprocessorsusing4differentdatasetswithitsowncharacteristicsandsizes.
TheresultsobtainedshowthatJavaperformsworsethanPythoninalmostallthetestsbyhavinghigherexecutiontimesandworsememorymanagementwhiletheimpactofusingamachinewithanARMprocessorisminimalalthoughingeneralitperformsbetterthanx86processor,especiallywhencomparingJava’sperformanceinbothmachines.
TheseresultssuggestthatJavadoesnotprovideenoughvaluetobecauseamoresuitableprogramminglanguagethanPythonforAIresearchersastheobtainedperformancedoesnotcompensatetheextraeffortbothinlearningtimeandcodingtimeJavarequirestoimplementprogramsthatsolvetheexactsameproblems.
Keywords:Java,Python,ArtificialIntelligence,ARM,performance,code
Index
Introduction 8
Stateoftheart 8
Proposal 9
Objectives 10
Methodology 11
StudyoftheexistingandmostrepresentativealgorithmsintheAI 11
Regression 11
Classification 12
StudyoftheavailableHardwaresystems 16
StudyofJavaandPythonprograminglanguages 16
Java 16
Python 19
Studyofthecharacteristicsandmetricstocompare 20
Code 20
Performance 21
StudyandresearchofexistingAIlibraries 21
Python 21
Java 24
Studyandresearchofpossiblemonitoringtools 25
Python 25
Java 26
Systemprovidedtools 26
Implementationofthecodeandpreparationofdata 28
Implementationofthealgorithms 28
Datasetselectionandpreprocessing 28
Experimentaldesignandset-up 33
Filesystemstructure 33
Compilation 35
Execution 36
Datacollection 37
Keyresultsobtainedinthestudy 38
Thecode 38
Theperformance 40
JavaandPythoninx86 40
Javainx86andARM 43
Pythoninx86andARM 46
JavaandPythoninARM 49
Conclusions 52
Futurework 53
Multithreading 53
Usingmorefeaturesofthelibrariesprovidedalgorithms 53
BSCtools 53
Furtherstudyofthecodingprocess 53
Otherprogramminglanguages 53
References 54
Listoffigures
Figure1:Logisticfunctionandgraphicalinterpretation 12
Figure2:HyperplanegeneratedbyaSVM 13
Figure3:DecisionTreerepresentingeachofthenodes 13
Figure4:GraphicalexampleofaKNNvotingprocess 14
Figure5:NaïveBayesrepresentationwherethealgorithmfindscommonfeatures 15
Figure6:Randomforestcomposedby9decisiontreesvotingtheclassresult. 15
Figure7:Javaarchitecturestructure 17
Figure8:JavaVirtualMachinecomponents 18
Figure9:Pythonexecutionprocess 20
Figure10:NumPylogo 22
Figure11:Pandaslogo 22
Figure12:Pandasdatastructures 23
Figure13:Scikit-Learnlogo 23
Figure14:WekaGUI 24
Figure15:Pythonprofilerexample 25
Figure16:JMXinterface 26
Figure17:SLURMlogo 27
Figure18:Sacctstatistics 27
Figure19:CSVrepresentationofadataset 31
Figure20 32
Figure21:Arfffilestructureexample 32
Figure22:GraphicalrepresentationofJavaandPython’sexecutiontimeinMareNostrum4Intel
machine 41
Figure23:GraphicalrepresentationofJavaandPython’sCPUefficiencyinMareNostrum4Intel
machine 41
Figure24:GraphicalrepresentationofJavaandPython’smemoryconsumptioninMareNostrum4
Intelmachine 43
Figure25:GraphicalrepresentationofJava’sexecutiontimeinbothMareNostrum4IntelandCTE-
ARMmachines 44
Figure26:GraphicalrepresentationofJava’sCPUefficiencyinbothMareNostrum4IntelandCTE-
ARMmachines 44
Figure27:GraphicalrepresentationofJava’smemoryconsumptioninbothMareNostrum4Inteland
CTE-ARMmachinesexcludingLinearregression 45
Figure28:GraphicalrepresentationofJava’sLinearregressionmemoryconsumptioninboth
MareNostrum4IntelandCTE-ARMmachines 46
Figure29:GraphicalrepresentationofPython’sExecutiontimeinbothMareNostrum4IntelandCTE-
ARMmachines 47
Figure30:GraphicalrepresentationofPython’sCPUefficiencyinbothMareNostrum4IntelandCTE-
ARMmachines 47
Figure31:GraphicalrepresentationofPython’sLinearregressionmemoryconsumptioninboth
MareNostrum4IntelandCTE-ARMmachines 48
Figure32:GraphicalrepresentationofPython’sNaïveBayesmemoryconsumptioninboth
MareNostrum4IntelandCTE-ARMmachines 48
Figure33:GraphicalrepresentationofJavaandPython’sexecutiontimeinMareNostrum4CTE-ARM
machine 49
Figure34:GraphicalrepresentationofJavaandPython’sCPUefficiencyinMareNostrum4CTE-ARM
machine 50
Figure35:GraphicalrepresentationofJavaandPython’sLinearregressionmemoryconsumptionin
MareNostrum4CTE-ARMmachine 51
Figure36:GraphicalrepresentationofJavaandPython’sNaïveBayesmemoryconsumptionin
MareNostrum4CTE-ARMmachine 51
Introduction
Stateoftheart
Overtheyears,theAItechnologieshavetakenabiggerpartinourlives.FromlanguagerecognitiontothemostadvancedautonomouscarsarepossiblethankstotherecentresearchofnewandmoreefficientAIalgorithms.ArtificialIntelligenceisapopulartopicin21stcentury,itisoneoftheadvancedresearchfieldsofcomputersciences.TheworkofAIbeganformallysoonafterWorldWarII,andtheword”ArtificialIntelligence”wasputforwardbyStanfordprofessorJohnMcCarthyin1956onDartmouthworkshop.TheareaofAIresearchgoesfurtherstill,itaimsnotonlyexistsinthetheoriesbutalsotocreateentities,whichincludesasignificantvarietyofsubfield,scalingfromuniversal(studyingandfeeling)toparticular,suchasplayingchess,diagnosingdiseases,writingpoetry,drivingvehiclesandproofofmathematicaltheorems.WiththetechnologiesofAIevolvingswiftly,itscapabilitiesarebeingappliedinallaspectsofsociety.
SelectingtheappropriateprograminglanguageisanimportanttaskforAIconstruction.Therearediverseandgeneraloptionssuchaspython,C++andLISP.CurrentlyPythonisoneofthemostpopularprogramminglanguagesforAIdevelopersduetothesimplicityofitscodeandthepowerfulAIlibrariesdevelopedbythecommunitysuchasPandas,NumpyorScikit-learn.Nevertheless,JavaplaysanimportantroleinAIprogramming.Javaisthemostwidelyusedprogramminglanguageintheworld,itisobject-orientedandscalable,whichisnecessaryforAIprojects.GiganticJavacodebasesareexploitedbypublicandprivateorganizationsandsectors,andtheJavaVirtualMachineasacomputeenvironmentisheavilyrelied(Georges,etal.,2006).JavaVirtualMachineallowsdeveloperstobuildasingleapplicationversionthatcouldrunonallJava-enabledcomputingplatforms.Maintainability,portabilityandtransparencyarethethreemainadvantagesofJavaprogramminglanguage.
However,therearetwoshortcomingsofWekacomparedwithPython.First,Weka'spre-processingandresultoutputaremoredifficult.Althoughitisconvenientforbeginnerstoprocessdatawithalittlefilter,itiseasiertowriteprogramslikePythonwhenprocessinglargeamountsofdata(Caia,etal.,2005).Similarly,althoughtheresultscanberunoutbypressing"Start"intheclassification,itismoretroublesomeforWekatomaketheresultsleadtotheformatorthenextapplication.Second,thePythonpackageisbooming.AlthoughWekaalsohasalotofpackages,butacloserlookwillrevealthatmostofthemareoldandhavenotbeenupdated.TheWekasuitewritteninJavaisalsodifficulttorewriteandcompile.Incontrast,thedevelopmentofPythonisflourishing.MostoflateresearchcouldberepackagedintoPythonpackagesforpeopletodownloadanduse,andtherearecountlessdevelopersstudyingPython.
Previousstudieshaveproventhatingeneralpurposeprograms,javaistheleastmemoryefficientprogramminglanguage(Prechel,s.f.)althoughtheonesfoundaremorethan5yearsold.Ifresearchwasmadeofthearticlesand/orresearchpapersrelatedtotheroleofJavaintheAIworldwritteninthelast4years,onewouldfindthattherearealmostnone.
IntheARMenvironment,JavahasastretchrelationshipwiththeARMarchitectureasJavawas,untilrecentyears,themainprogramminglanguagesforAndroiddevelopersand,therefore,fortheARMarchitectureusedinthiskindofdeviceswiththeAndroidoperatingsystem.SincethemainobjectivebehindAndroiddevelopmentwastocreateaplatform-independentapplicationenvironmentthat
canrunoneverydevice,Javawastheperfectcandidatetobethemainprogramminglanguageasitalreadyhasthisquality.
However,therearenotmuchinformationabouttheperformanceofJavaandtheJVMintheservermarketfortheARMprocessors.ThankstotheinclusionofARMprocessorsinMACsystemsonNovember10,2020,somebenchmarkshavebeenmadetotesttheperformanceofthesesystemsalthoughnoneofthemtestspecificallyjava-basedapplications.TheonlybenchmarktestingtheperformanceofaJavaapplicationonbothARMandx86architecturefoundwhenthisprojectwasbeingmadeshowedthatARMversionconsumedmorememorybuthadingeneralabetterperformance(Voitylov,2021).
PythonhaveevenlesspresenceintheARMarchitectureenvironment.CurrentresearcharemadeonFPGAsandthefewresultsprovidedbythecommunitysuggestthatPythonhavehugepotentialforthiskindofenvironment(Schmidt,etal.,2017)withsomestatingthata30xperformancewasobtainedovertheexistingCcodebutthelackofimplementationofcertainlibrariesdonotallowresearcherstotestnewbenchmarks.
Proposal
AsmoreproductsandfeaturesaredevelopedbasedonAItechnologyitisimportanttohaveagoodbasefromwhichconstructthesystem’sstructure.Therefore,havingagoodprogramlanguagefromwhichdevelopasolutionisessential.Asitwasstatedbefore,Pythonisthego-toprogramlanguagenowadaysfordevelopingAisoftwareduetotheeasycodingandthatanyonecanquicklylearnitbutitisalsoimportanttoalsotakeincountotherexistingoptionsasabaseprogramlanguage,inthiscase,Java.
Physics,mathematicians,andengineersarethemainpeopledevelopingnewAIalgorithmsandsolutionsastheyaretheyhaveadeepcomprehensionofthebasesbehindtheAIalgorithmsandthestatisticalcomponentofthem.Forthem,Pythonisanappealinglanguageprogramfromwhichdeveloptheirsolutionsasitdoesn’trequirealotoftimetolearnitssyntaxandthefinalcodeproducedisshortingeneral.ThatiswhymanyAIlibrariessuchasNumPyofSklearnaredevelopedforPython.JavaontheotherhandhasmuchlessresearchbehindinregardtoAIlibrariesbuttheresomeofthemlikeWEKAthatarestillusedandsimplifiesthejoboftheprogrammerwithitsAPI.ThisisthereasonthatthisprojectalsoaimstoanalyzethecharacteristicsofbothlanguagesfromthepointofviewofitscodeandspecificallyforthedevelopmentofAIprograms.
Performanceisanotherkeyfactorwhencomparingprogramlanguages.BothJavaandPythonhavetheirowncharacteristicswhichintheendproducedifferentresultsontheirperformance(Destefanis,etal.,2016).BothJavaandPythonarehighlevelprogramminglanguagesandsoitishardorevennotpossibletoaccessthehardwaredirectlytooptimizecodesotheybothdependonitsvirtualmachineandthecodeimplementationtodetermineitsfinalperformance.Oneofthemostremarkableaspectisthatmostofthetimes,PythonisinterpretingbytecodeandexecutingitlocallywhileJavacompilestoan“IntermediateLanguage”andtheJavaVirtualMachinereadsthebytecodeandjust-in-timecompilesittomachinecode.This,togetherwiththefactthatJavaisJIT-Compiledenablesoptimizationstobemadeatruntime.ThisJIToptimizerwillseewhichpartsoftheapplicationarebeingexecutedalargenumberoftimesandwillthenmakeoptimizationstothosebitsofcode,byreplacingthemwithmoreefficientversions.ItisalsoimportanttokeepinmindthatJavaisstrongly-typedlanguagesotheoptimizercanmakemanymoreassumptionsaboutthecode.
WiththesepremisesitwouldbeinterestingtotesttheoptimizationsJavaprovidestohaveanobjectiveperspectiveofitsperformanceandinparticularforAIalgorithms.
ItisalsoimportanttotakeincountandanalyzeotherarchitecturessuchasARM,whichisincreasingitsuseintheserver,HPCandeveninpersonalcomputers.ARMisthemainprocessorarchitectureintheFUGAKUSupercomputer,thenumber1oftheTop500supercomputersintheworld(Anon.,s.f.).TheBarcelonaSupercomputingCentrealsoincludesanARMmachineandtheArm-BSCCentreofExcellencewhichaimtoincreasethecollaborationbetweentheBSCandARMforresearchpurposes.Therefore,thisisanexcellentopportunitytoalsotakeincountthearchitectureasafactorwhencomparingbothlanguages.
Objectives
TheaimofthisprojectistodetermineifJavastillhasaplaceintheAIworldasarelevantprograminglanguagebycomparingittothenowadaysmostpopularlanguageintheAIsoftwaredevelopment,Python.Also,thisthesistriestoprovideandobjectiveanalysisoftheARMarchitecturewithAIalgorithmsasthecurrentstateoftheartisquitelackinginthisregard.
TheultimategoaloftheresultsisthattheyshouldprovideafirstapproachoftheactualperformanceofJavaandPythonusinguptodatetechnologiesandbeapossiblestartingpointforfutureresearchregardingnewtechniquestoincreaseJavaperformanceforAIalgorithms.Moreover,theoutputcouldhighlightsomepossibleunknownorunclearareaswhereJavacouldprovetobeamoreappealingtoolforresearchers.
Theobjectivestackledinthestudyare:
EvaluatethecodingprocessfortheimplementationofmostrepresentativealgorithmsinJavaandPython.
Evaluatethetotallengthofcodeproducedintheimplementationofthealgorithms.
EvaluatetheperformanceoftheimplementedalgorithmsinJavaandPythoninamachinewithx86architecture.
EvaluatetheperformanceoftheimplementedalgorithmsinJavaandPythoninamachinewithARMarchitecture.
Evaluatetheimpactofthearchitecturebyanalyzingtheperformanceofthealgorithmsimplementedinthesameprograminglanguagebutinamachinewithdifferentarchitecture.
AnalyzethecurrentstateofJavaontheAIworldbasedonthepreviousevaluations.
Methodology
Thissectioncontainstheresearchandanalysismadeoverthedifferentelementsthatwillmakepartoftheprojectaswellasthemetricsandcharacteristicthatwillbeusedtopresentresults.
StudyoftheexistingandmostrepresentativealgorithmsintheAI
AIenvironmentcontainsmanydifferentareasofstudyandtherefor,astudyofthemostrepresentativealgorithmswasmade.Thealgorithmsselectedcanbeclassifiedintotwocategories:RegressionandClassification.
Regression
Regressionalgorithm’sroleistopredicttheoutputvaluesofacertainproblembasedoninputfeaturesfromthedatafedinthesystem.Inordertodoso,thealgorithmbuildsamodelbasedonthefeaturesofthetrainingdataandthenusingthemodeltopredictthevaluefornewdata.
Linearregression
Thelinearregressionalgorithmisoneofthemost-usedregressionalgorithmsinMachineLearning.Asignificantvariableoragroupofthemfromthedatasetischosentopredictanoutputvariable.Therearethreetypesofregressionalgorithms:SimpleLinearregression,MultilinearregressionandtheNon-linearRegression.InthisworktheMultilinearregressiontypewillbeusedasitismorerepresentativethantheNon-linearregression(Yan&Su,s.f.)andhasmorecomputationalcomplexitythantheLinearregression.
Multilinearregressionisusedtoestimatetherelationshipbetweentwoormoreindependentvariablesandonedependentvariable.Thealgorithmanalysesthedatafromatrainingsetandcreatesamodelwiththefollowingformula:
𝑦=𝛽0+𝑋1𝛽1+⋯+𝑋𝑛𝛽𝑛+𝜀
Where:
y=thepredictedvalueofthedependentvariable
𝛽0=they-intercept
𝑋1𝛽1=theregressioncoefficientofthefirstindependentvariable(a.k.a.theeffectthatincreasingthevalueoftheindependentvariablehasonthepredictedyvalue)
𝑋𝑛𝛽𝑛=theregressioncoefficientofthelastindependentvariable
ε=modelerror(a.k.a.howmuchvariationthereisinourestimateofy)
Classification
Classificationisdefinedastheprocessofrecognition,understanding,andgroupingofobjectsandideasintopre-setcategories.Classificationalgorithmsusedinmachinelearningutilizeinputtrainingdataforthepurposeofpredictingtheprobabilitythatthedatathatfollowswillfallintooneofthepredeterminedcategories.Fromtheexistingclassificationalgorithms,thefollowingoneswereanalysed:
Logisticregression
LogisticregressionisamathematicalmodelingapproachthatcanbeusedtodescribetherelationshipofseveralindependentvariablesX1,X2,...,Xktoadependentvariableand/orpredictitsvalue.Todoso,itusesalogisticfunction,whichdescribesthemathematicalformonwhichthelogisticmodelisbased.Thefactthatthelogisticfunctionf(z)rangesbetween0and1istheprimaryreasonthelogisticmodelissopopular.Themodelisdesignedtodescribeaprobability,whichisalwayssomenumberbetween0and1.
Figure1:Logisticfunctionandgraphicalinterpretation
SupportVectorMachine
SupportVectorMachine(SVM)isoneofthemostextensivelyusedsupervisedmachinelearningalgorithmsinthefieldoftextclassification.Givenasetofpointsof2typesinNdimensionalplace,SVMgeneratesa(N—1)dimensionalhyperplanetoseparatethosepointsinto2groups.Itcomputesthelinearseparationsurfacewithamaximummarginforagiventrainingset.Whenalinearseparationsurfacedoesnotexist,forexample,inthepresenceofnoisydata,SVMsalgorithmswithaslackvariableareappropriate.ThisClassifierattemptstopartitionthedataspacewiththeuseoflinearornon-lineardelineationsbetweenthedifferentclasses.Thebesthyperplanewouldbethe
onewiththelargestpositivevectorsandseparatingmostofthedatanodes.Thisisanextremelypowerfulclassificationmachinethatcanbeappliedtoawiderangeofdatanormalizationproblems.
Figure2:HyperplanegeneratedbyaSVM
DecisionTrees
Adecisiontreeisadecisionsupporttoolthatusesatree-likegraphormodelofdecisionsandtheirpossibleconsequences,includingchance-eventoutcomes,resourcecosts,andutility.InaDecisiontree,therearethreetypesofnodes,whicharetheRootNode,theDecisionNodeandtheLeaforTerminalNode.TheRootnoderepresentstheentirepopulationorsampleandthisfurthergetsdividedintotwoormorehomogeneoussets,theDecisionnodesareusedtomakeanydecisionandhavemultiplebranches,whereasTerminalnodesaretheoutputofthosedecisionsanddonotcontainanyfurtherbranches.
Figure3:DecisionTreerepresentingeachofthenodes
Inordertopredictaclasslabelforarecord,thealgorithmstartsfromtherootofthetree.Itcomparesthevaluesoftherootattributewiththerecord’sattribute,and,onthebasisofcomparison,itfollowsthebranchcorrespondingtothatvalueandjumptothenextnode.Morespecifically,thecompleteprocesscanbedividedinthefollowingsteps:
Beginthetreewiththerootnode,saysS,whichcontainsthecompletedataset.
FindthebestattributeinthedatasetusingAttributeSelectionMeasure(ASM).
DividetheSintosubsetsthatcontainspossiblevaluesforthebestattributes.
Generatethedecisiontreenode,whichcontainsthebestattribute.
Recursivelymakenewdecisiontreesusingthesubsetsofthedatasetcreatedinstep-3.Continuethisprocessuntilastageisreachedwhereyoucannotfurtherclassifythenodesandcalledthefinalnodeasaleafnode.
k-NearestNeighbor
k-NearestNeighborisamethodthatsimplysearchestheclosestobservationstotheoneyouaretryingtopredictandclassifiesthepointofinterestbasedonmostofthedataaroundit.Itisasupervisedalgorithmsothetrainingdatasetislabeled,withtheclassorexpectedresultgiven"arow"ofdata.Itisalsoinstancebasedsoitdoesnotexplicitlylearnamodel(suchasLogisticRegressionordecisiontrees).Insteaditmemorizesthetraininginstancesthatareusedasa“knowledgebase”forthepredictionphase.
Figure4:GraphicalexampleofaKNNvotingprocess
NaïveBayes
ANaïveBayesclassifierisaprobabilisticclassifierbasedonBayestheorem.Itisaconditionalprobabilitymodel.Themodeliscallednaiveasitoperatesontheassumptionthatalltheinputdatavaluesareunrelatedtoeachother.Whilethiscannottakeplaceintherealworld,thissimple
algorithmcanbeappliedtoamultitudeofnormalizeddataflowstopredictresultswithagreatdegreeofaccuracy.
Thereare3maintypesofNaiveBayesalgorithms:
Gaussian:Itisusedinclassificationanditassumesthatfeaturesfollowanormaldistribution.
Multinomial:Thisoneisusedfordiscretecounts.
Bernoulliorbinomial:Thebinomialmodelisusefulifthefeaturevectorsarebinary.
Figure5:NaïveBayesrepresentationwherethealgorithmfindscommonfeatures.
Randomforest
TheRandomForestalgorithmconsistsofalargenumberofindividualdecisiontreesthatoperateasanensemble.Thealgorithmestablishestheoutcomebasedonthepredictionsofthedecisiontrees.Eachindividualtreeintherandomforestspitsoutaclasspredictionandtheclasswiththemostvotesbecomethemodelprediction.
Figure6:Randomforestcomposedby9decisiontreesvotingtheclassresult.
Arandomforesteradicatesthelimitationsofadecisiontreealgorithm.Itreducestheoverfittingofdatasetsandincreasesprecision.
StudyoftheavailableHardwaresystems
BSChasprovidedtwodifferentaccountsinordertofulfillthisproject.
AnaccountforMarensotrum4withanx86architecture.Eachcomputingmodulehasthefollowingcharacteristics:
2xIntelXeonPlatinum816024Cat2.1GHz
216nodeswith12x32GBDDR4-2667DIMMS(8GB/core)
3240nodeswith12x8GBDDR4-2667DIMMS(2GB/core)
Interconnectionnetworks:
100GbIntelOmni-PathFull-FatTree
10GbEthernet
OperatingSystem:SUSELinuxEnterpriseServer12SP2AnaccountfortheMareNostrum4CTEARMmachine
A64FXCPU(1Armv8.2-A+SVEchip)@2.20GHz(groupingthecoresin4CMG-CoreMemorygroup-with12cores/CMGandanadditionalassistantcoreperCMGfortheOperatingsystem,addingatotalof48cores+4system-corespernode.TheARMv8.2-AcoreshaveavailabletheScalableVectorExtension(SVE)SIMDinstructionsetupto512-bitvectorimplementation.
32GBofmainmemoryHBM2
TofuDnetwork
SinglePortInfinibandEDR
Theoperatingsystemis,RedHatEnterpriseLinuxServer8.1
StudyofJavaandPythonprograminglanguages
Java
Javaisahigh-level,object-oriented,general-purposeprogramminglanguagewidelyusedinpersonalcomputers,datacenters,gameconsoles,supercomputers,mobilephonesandtheInternetapplications.Itwasoriginallydevelopedin1991byJamesGosling,aCanadiancomputerscientist,atwhatwasthenSunMicrosystems,intheU.S.stateofCalifornia.Today,afterdecadesofeffect,Javahasbeendevelopedintoafullyfunctional,multipurpose,andpowerfullanguagesuitableforbothindividualandenterpriseusers.
Figure7:Javaarchitecturestructure
ThemaincomponentsofJavaare:TheJavaVirtualMachine(JVM),theJavaRuntimeEnvironment(JRE)andtheJavaDevelopmentKit(JDK).
TheJavaVirtualMachine(JVM)istheruntimeengineoftheJavaPlatform,whichallowsanyprogramwritteninJavaorotherlanguagecompiledintoJavabytecodetorunonanycomputerthathasanativeJVM.Itprovidesthefunctionalityofimportantsubsystemssuchasgarbagecollection,memorymanagementandsecurity.JVMisplatform-independentanditcanbecustomizedandconfiguredusingaVirtualinterfaceitprovideswhichisnotmachine-dependentandisalsoindependentoftheoperatingsystem.
Figure8:JavaVirtualMachinecomponents
TheJavavirtualmachineThemainsubsystemsare:
ClassLoader:ThisisthesubsystemofJVMusedtoloadclassfiles.Wheneverauserrunajavaprogram,classloaderloadsitfirst.
JVMmemorysubsystem:T
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 专业定制塑钢窗户采购协议示例(2024年度)版B版
- 二零二五年度瓷砖行业环保设施建设合同3篇
- 2025年度教育课程策划开发合同范本4篇
- 2025年度智慧社区场商位租赁及社区服务合同4篇
- 2025年度文化旅游区场地承包经营与开发合同模板3篇
- 2025年度现代化厂房施工建设合同(新版)4篇
- 2024年货物买卖合同跨境电商条款
- 2025年度叉车租赁与租赁物租赁期限续签合同4篇
- 专属校车司机招聘协议:2024年版详尽协议版B版
- 2024赞助合同书范本:展览赞助合作协议3篇
- 小学一年级20以内加减法混合运算3000题(已排版)
- 智慧工厂数字孪生解决方案
- 病机-基本病机 邪正盛衰讲解
- 品管圈知识 课件
- 非诚不找小品台词
- 2024年3月江苏省考公务员面试题(B类)及参考答案
- 患者信息保密法律法规解读
- 老年人护理风险防控PPT
- 充电桩采购安装投标方案(技术方案)
- 医院科室考勤表
- 镀膜员工述职报告
评论
0/150
提交评论