最终硕士论文 高性能计算_第1页
最终硕士论文 高性能计算_第2页
最终硕士论文 高性能计算_第3页
最终硕士论文 高性能计算_第4页
最终硕士论文 高性能计算_第5页
已阅读5页,还剩82页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

PAGE

1

JavaV.S.PythoninAI

FinalMasterThesis–HighPerformanceComputing

MasterinInnovationandResearchinInformaticsFacultatd’inform`aticadeBarcelonaUniversitatPolit`ecnicadeCatalunya

Author:

MarcoM.AguadoAcevedo

marcoaguado95@

Supervisors:MarisaGilGómez

marisa.gil@

October28,2021

PAGE

10

Acknowledgements

Firstandforemost,IwouldliketousethissectiontothankprofessorMarisaGilfortheopportunityshegavetometoworkonthisinterestingproject.

IwouldalsoliketothankprofessorXavierforprovidingmeaccesstotheCTE-ARMsystemoftheBSCandforprovidingadviceregardingtheanalysisandtheexecutionprocess.

NotonlydoIwanttoexpressmygratitudetowardsthemfortheunconditionalsupport,butalsofortheirpatienceandkindness.

Icannotendthisnotewithoutthankingmywholefamily,especiallymyparentsandaunt,whosup-portedmethroughoutnotonlymyacademiccareerbutalsomylife.

Abstract

Java’spositionasanappealingprogramminglanguagefordevelopingAIsoftwareisnotclearinthecurrentresearcharea.Itiswell-stablishedthatotherprogramminglanguagessuchasPythonhavegrowninpopularityintheAIresearchcommunityasaneasytolearn,easytouseandsimplecodetooloverthemorestrictandcomplexlanguagessuchasJava.Also,withtheincreaseinthenumberofprocessorswithARMarchitectureusedforserverpurposesduetotheirbetterenergyefficiency,theinterestintheirperformanceforspecificresearchareasalsoincreases.Thisthesisaimstoprovideanobjectiveandup-to-dateviewofJava’scurrentsituationinthisareabycomparingitwithPythonbothintermsofthecodingprocessandtheirperformance.

TotestifJavacouldprovemorevaluetoresearchersthanPython,asetofrepresentativeAIalgorithmswereimplementedinbothlanguagesusingthenowadaysmostusedlibraries:WekaforJavaandScikit-learn,PandasandNumpyforPythonandexecutedintwodifferentmachinesfromtheMareNostrum4system:TheIntelmachinewithx86architectureprocessorsandtheCTE-ARMmachinewithARMarchitectureprocessorsusing4differentdatasetswithitsowncharacteristicsandsizes.

TheresultsobtainedshowthatJavaperformsworsethanPythoninalmostallthetestsbyhavinghigherexecutiontimesandworsememorymanagementwhiletheimpactofusingamachinewithanARMprocessorisminimalalthoughingeneralitperformsbetterthanx86processor,especiallywhencomparingJava’sperformanceinbothmachines.

TheseresultssuggestthatJavadoesnotprovideenoughvaluetobecauseamoresuitableprogramminglanguagethanPythonforAIresearchersastheobtainedperformancedoesnotcompensatetheextraeffortbothinlearningtimeandcodingtimeJavarequirestoimplementprogramsthatsolvetheexactsameproblems.

Keywords:Java,Python,ArtificialIntelligence,ARM,performance,code

Index

Introduction 8

Stateoftheart 8

Proposal 9

Objectives 10

Methodology 11

StudyoftheexistingandmostrepresentativealgorithmsintheAI 11

Regression 11

Classification 12

StudyoftheavailableHardwaresystems 16

StudyofJavaandPythonprograminglanguages 16

Java 16

Python 19

Studyofthecharacteristicsandmetricstocompare 20

Code 20

Performance 21

StudyandresearchofexistingAIlibraries 21

Python 21

Java 24

Studyandresearchofpossiblemonitoringtools 25

Python 25

Java 26

Systemprovidedtools 26

Implementationofthecodeandpreparationofdata 28

Implementationofthealgorithms 28

Datasetselectionandpreprocessing 28

Experimentaldesignandset-up 33

Filesystemstructure 33

Compilation 35

Execution 36

Datacollection 37

Keyresultsobtainedinthestudy 38

Thecode 38

Theperformance 40

JavaandPythoninx86 40

Javainx86andARM 43

Pythoninx86andARM 46

JavaandPythoninARM 49

Conclusions 52

Futurework 53

Multithreading 53

Usingmorefeaturesofthelibrariesprovidedalgorithms 53

BSCtools 53

Furtherstudyofthecodingprocess 53

Otherprogramminglanguages 53

References 54

Listoffigures

Figure1:Logisticfunctionandgraphicalinterpretation 12

Figure2:HyperplanegeneratedbyaSVM 13

Figure3:DecisionTreerepresentingeachofthenodes 13

Figure4:GraphicalexampleofaKNNvotingprocess 14

Figure5:NaïveBayesrepresentationwherethealgorithmfindscommonfeatures 15

Figure6:Randomforestcomposedby9decisiontreesvotingtheclassresult. 15

Figure7:Javaarchitecturestructure 17

Figure8:JavaVirtualMachinecomponents 18

Figure9:Pythonexecutionprocess 20

Figure10:NumPylogo 22

Figure11:Pandaslogo 22

Figure12:Pandasdatastructures 23

Figure13:Scikit-Learnlogo 23

Figure14:WekaGUI 24

Figure15:Pythonprofilerexample 25

Figure16:JMXinterface 26

Figure17:SLURMlogo 27

Figure18:Sacctstatistics 27

Figure19:CSVrepresentationofadataset 31

Figure20 32

Figure21:Arfffilestructureexample 32

Figure22:GraphicalrepresentationofJavaandPython’sexecutiontimeinMareNostrum4Intel

machine 41

Figure23:GraphicalrepresentationofJavaandPython’sCPUefficiencyinMareNostrum4Intel

machine 41

Figure24:GraphicalrepresentationofJavaandPython’smemoryconsumptioninMareNostrum4

Intelmachine 43

Figure25:GraphicalrepresentationofJava’sexecutiontimeinbothMareNostrum4IntelandCTE-

ARMmachines 44

Figure26:GraphicalrepresentationofJava’sCPUefficiencyinbothMareNostrum4IntelandCTE-

ARMmachines 44

Figure27:GraphicalrepresentationofJava’smemoryconsumptioninbothMareNostrum4Inteland

CTE-ARMmachinesexcludingLinearregression 45

Figure28:GraphicalrepresentationofJava’sLinearregressionmemoryconsumptioninboth

MareNostrum4IntelandCTE-ARMmachines 46

Figure29:GraphicalrepresentationofPython’sExecutiontimeinbothMareNostrum4IntelandCTE-

ARMmachines 47

Figure30:GraphicalrepresentationofPython’sCPUefficiencyinbothMareNostrum4IntelandCTE-

ARMmachines 47

Figure31:GraphicalrepresentationofPython’sLinearregressionmemoryconsumptioninboth

MareNostrum4IntelandCTE-ARMmachines 48

Figure32:GraphicalrepresentationofPython’sNaïveBayesmemoryconsumptioninboth

MareNostrum4IntelandCTE-ARMmachines 48

Figure33:GraphicalrepresentationofJavaandPython’sexecutiontimeinMareNostrum4CTE-ARM

machine 49

Figure34:GraphicalrepresentationofJavaandPython’sCPUefficiencyinMareNostrum4CTE-ARM

machine 50

Figure35:GraphicalrepresentationofJavaandPython’sLinearregressionmemoryconsumptionin

MareNostrum4CTE-ARMmachine 51

Figure36:GraphicalrepresentationofJavaandPython’sNaïveBayesmemoryconsumptionin

MareNostrum4CTE-ARMmachine 51

Introduction

Stateoftheart

Overtheyears,theAItechnologieshavetakenabiggerpartinourlives.FromlanguagerecognitiontothemostadvancedautonomouscarsarepossiblethankstotherecentresearchofnewandmoreefficientAIalgorithms.ArtificialIntelligenceisapopulartopicin21stcentury,itisoneoftheadvancedresearchfieldsofcomputersciences.TheworkofAIbeganformallysoonafterWorldWarII,andtheword”ArtificialIntelligence”wasputforwardbyStanfordprofessorJohnMcCarthyin1956onDartmouthworkshop.TheareaofAIresearchgoesfurtherstill,itaimsnotonlyexistsinthetheoriesbutalsotocreateentities,whichincludesasignificantvarietyofsubfield,scalingfromuniversal(studyingandfeeling)toparticular,suchasplayingchess,diagnosingdiseases,writingpoetry,drivingvehiclesandproofofmathematicaltheorems.WiththetechnologiesofAIevolvingswiftly,itscapabilitiesarebeingappliedinallaspectsofsociety.

SelectingtheappropriateprograminglanguageisanimportanttaskforAIconstruction.Therearediverseandgeneraloptionssuchaspython,C++andLISP.CurrentlyPythonisoneofthemostpopularprogramminglanguagesforAIdevelopersduetothesimplicityofitscodeandthepowerfulAIlibrariesdevelopedbythecommunitysuchasPandas,NumpyorScikit-learn.Nevertheless,JavaplaysanimportantroleinAIprogramming.Javaisthemostwidelyusedprogramminglanguageintheworld,itisobject-orientedandscalable,whichisnecessaryforAIprojects.GiganticJavacodebasesareexploitedbypublicandprivateorganizationsandsectors,andtheJavaVirtualMachineasacomputeenvironmentisheavilyrelied(Georges,etal.,2006).JavaVirtualMachineallowsdeveloperstobuildasingleapplicationversionthatcouldrunonallJava-enabledcomputingplatforms.Maintainability,portabilityandtransparencyarethethreemainadvantagesofJavaprogramminglanguage.

However,therearetwoshortcomingsofWekacomparedwithPython.First,Weka'spre-processingandresultoutputaremoredifficult.Althoughitisconvenientforbeginnerstoprocessdatawithalittlefilter,itiseasiertowriteprogramslikePythonwhenprocessinglargeamountsofdata(Caia,etal.,2005).Similarly,althoughtheresultscanberunoutbypressing"Start"intheclassification,itismoretroublesomeforWekatomaketheresultsleadtotheformatorthenextapplication.Second,thePythonpackageisbooming.AlthoughWekaalsohasalotofpackages,butacloserlookwillrevealthatmostofthemareoldandhavenotbeenupdated.TheWekasuitewritteninJavaisalsodifficulttorewriteandcompile.Incontrast,thedevelopmentofPythonisflourishing.MostoflateresearchcouldberepackagedintoPythonpackagesforpeopletodownloadanduse,andtherearecountlessdevelopersstudyingPython.

Previousstudieshaveproventhatingeneralpurposeprograms,javaistheleastmemoryefficientprogramminglanguage(Prechel,s.f.)althoughtheonesfoundaremorethan5yearsold.Ifresearchwasmadeofthearticlesand/orresearchpapersrelatedtotheroleofJavaintheAIworldwritteninthelast4years,onewouldfindthattherearealmostnone.

IntheARMenvironment,JavahasastretchrelationshipwiththeARMarchitectureasJavawas,untilrecentyears,themainprogramminglanguagesforAndroiddevelopersand,therefore,fortheARMarchitectureusedinthiskindofdeviceswiththeAndroidoperatingsystem.SincethemainobjectivebehindAndroiddevelopmentwastocreateaplatform-independentapplicationenvironmentthat

canrunoneverydevice,Javawastheperfectcandidatetobethemainprogramminglanguageasitalreadyhasthisquality.

However,therearenotmuchinformationabouttheperformanceofJavaandtheJVMintheservermarketfortheARMprocessors.ThankstotheinclusionofARMprocessorsinMACsystemsonNovember10,2020,somebenchmarkshavebeenmadetotesttheperformanceofthesesystemsalthoughnoneofthemtestspecificallyjava-basedapplications.TheonlybenchmarktestingtheperformanceofaJavaapplicationonbothARMandx86architecturefoundwhenthisprojectwasbeingmadeshowedthatARMversionconsumedmorememorybuthadingeneralabetterperformance(Voitylov,2021).

PythonhaveevenlesspresenceintheARMarchitectureenvironment.CurrentresearcharemadeonFPGAsandthefewresultsprovidedbythecommunitysuggestthatPythonhavehugepotentialforthiskindofenvironment(Schmidt,etal.,2017)withsomestatingthata30xperformancewasobtainedovertheexistingCcodebutthelackofimplementationofcertainlibrariesdonotallowresearcherstotestnewbenchmarks.

Proposal

AsmoreproductsandfeaturesaredevelopedbasedonAItechnologyitisimportanttohaveagoodbasefromwhichconstructthesystem’sstructure.Therefore,havingagoodprogramlanguagefromwhichdevelopasolutionisessential.Asitwasstatedbefore,Pythonisthego-toprogramlanguagenowadaysfordevelopingAisoftwareduetotheeasycodingandthatanyonecanquicklylearnitbutitisalsoimportanttoalsotakeincountotherexistingoptionsasabaseprogramlanguage,inthiscase,Java.

Physics,mathematicians,andengineersarethemainpeopledevelopingnewAIalgorithmsandsolutionsastheyaretheyhaveadeepcomprehensionofthebasesbehindtheAIalgorithmsandthestatisticalcomponentofthem.Forthem,Pythonisanappealinglanguageprogramfromwhichdeveloptheirsolutionsasitdoesn’trequirealotoftimetolearnitssyntaxandthefinalcodeproducedisshortingeneral.ThatiswhymanyAIlibrariessuchasNumPyofSklearnaredevelopedforPython.JavaontheotherhandhasmuchlessresearchbehindinregardtoAIlibrariesbuttheresomeofthemlikeWEKAthatarestillusedandsimplifiesthejoboftheprogrammerwithitsAPI.ThisisthereasonthatthisprojectalsoaimstoanalyzethecharacteristicsofbothlanguagesfromthepointofviewofitscodeandspecificallyforthedevelopmentofAIprograms.

Performanceisanotherkeyfactorwhencomparingprogramlanguages.BothJavaandPythonhavetheirowncharacteristicswhichintheendproducedifferentresultsontheirperformance(Destefanis,etal.,2016).BothJavaandPythonarehighlevelprogramminglanguagesandsoitishardorevennotpossibletoaccessthehardwaredirectlytooptimizecodesotheybothdependonitsvirtualmachineandthecodeimplementationtodetermineitsfinalperformance.Oneofthemostremarkableaspectisthatmostofthetimes,PythonisinterpretingbytecodeandexecutingitlocallywhileJavacompilestoan“IntermediateLanguage”andtheJavaVirtualMachinereadsthebytecodeandjust-in-timecompilesittomachinecode.This,togetherwiththefactthatJavaisJIT-Compiledenablesoptimizationstobemadeatruntime.ThisJIToptimizerwillseewhichpartsoftheapplicationarebeingexecutedalargenumberoftimesandwillthenmakeoptimizationstothosebitsofcode,byreplacingthemwithmoreefficientversions.ItisalsoimportanttokeepinmindthatJavaisstrongly-typedlanguagesotheoptimizercanmakemanymoreassumptionsaboutthecode.

WiththesepremisesitwouldbeinterestingtotesttheoptimizationsJavaprovidestohaveanobjectiveperspectiveofitsperformanceandinparticularforAIalgorithms.

ItisalsoimportanttotakeincountandanalyzeotherarchitecturessuchasARM,whichisincreasingitsuseintheserver,HPCandeveninpersonalcomputers.ARMisthemainprocessorarchitectureintheFUGAKUSupercomputer,thenumber1oftheTop500supercomputersintheworld(Anon.,s.f.).TheBarcelonaSupercomputingCentrealsoincludesanARMmachineandtheArm-BSCCentreofExcellencewhichaimtoincreasethecollaborationbetweentheBSCandARMforresearchpurposes.Therefore,thisisanexcellentopportunitytoalsotakeincountthearchitectureasafactorwhencomparingbothlanguages.

Objectives

TheaimofthisprojectistodetermineifJavastillhasaplaceintheAIworldasarelevantprograminglanguagebycomparingittothenowadaysmostpopularlanguageintheAIsoftwaredevelopment,Python.Also,thisthesistriestoprovideandobjectiveanalysisoftheARMarchitecturewithAIalgorithmsasthecurrentstateoftheartisquitelackinginthisregard.

TheultimategoaloftheresultsisthattheyshouldprovideafirstapproachoftheactualperformanceofJavaandPythonusinguptodatetechnologiesandbeapossiblestartingpointforfutureresearchregardingnewtechniquestoincreaseJavaperformanceforAIalgorithms.Moreover,theoutputcouldhighlightsomepossibleunknownorunclearareaswhereJavacouldprovetobeamoreappealingtoolforresearchers.

Theobjectivestackledinthestudyare:

EvaluatethecodingprocessfortheimplementationofmostrepresentativealgorithmsinJavaandPython.

Evaluatethetotallengthofcodeproducedintheimplementationofthealgorithms.

EvaluatetheperformanceoftheimplementedalgorithmsinJavaandPythoninamachinewithx86architecture.

EvaluatetheperformanceoftheimplementedalgorithmsinJavaandPythoninamachinewithARMarchitecture.

Evaluatetheimpactofthearchitecturebyanalyzingtheperformanceofthealgorithmsimplementedinthesameprograminglanguagebutinamachinewithdifferentarchitecture.

AnalyzethecurrentstateofJavaontheAIworldbasedonthepreviousevaluations.

Methodology

Thissectioncontainstheresearchandanalysismadeoverthedifferentelementsthatwillmakepartoftheprojectaswellasthemetricsandcharacteristicthatwillbeusedtopresentresults.

StudyoftheexistingandmostrepresentativealgorithmsintheAI

AIenvironmentcontainsmanydifferentareasofstudyandtherefor,astudyofthemostrepresentativealgorithmswasmade.Thealgorithmsselectedcanbeclassifiedintotwocategories:RegressionandClassification.

Regression

Regressionalgorithm’sroleistopredicttheoutputvaluesofacertainproblembasedoninputfeaturesfromthedatafedinthesystem.Inordertodoso,thealgorithmbuildsamodelbasedonthefeaturesofthetrainingdataandthenusingthemodeltopredictthevaluefornewdata.

Linearregression

Thelinearregressionalgorithmisoneofthemost-usedregressionalgorithmsinMachineLearning.Asignificantvariableoragroupofthemfromthedatasetischosentopredictanoutputvariable.Therearethreetypesofregressionalgorithms:SimpleLinearregression,MultilinearregressionandtheNon-linearRegression.InthisworktheMultilinearregressiontypewillbeusedasitismorerepresentativethantheNon-linearregression(Yan&Su,s.f.)andhasmorecomputationalcomplexitythantheLinearregression.

Multilinearregressionisusedtoestimatetherelationshipbetweentwoormoreindependentvariablesandonedependentvariable.Thealgorithmanalysesthedatafromatrainingsetandcreatesamodelwiththefollowingformula:

𝑦=𝛽0+𝑋1𝛽1+⋯+𝑋𝑛𝛽𝑛+𝜀

Where:

y=thepredictedvalueofthedependentvariable

𝛽0=they-intercept

𝑋1𝛽1=theregressioncoefficientofthefirstindependentvariable(a.k.a.theeffectthatincreasingthevalueoftheindependentvariablehasonthepredictedyvalue)

𝑋𝑛𝛽𝑛=theregressioncoefficientofthelastindependentvariable

ε=modelerror(a.k.a.howmuchvariationthereisinourestimateofy)

Classification

Classificationisdefinedastheprocessofrecognition,understanding,andgroupingofobjectsandideasintopre-setcategories.Classificationalgorithmsusedinmachinelearningutilizeinputtrainingdataforthepurposeofpredictingtheprobabilitythatthedatathatfollowswillfallintooneofthepredeterminedcategories.Fromtheexistingclassificationalgorithms,thefollowingoneswereanalysed:

Logisticregression

LogisticregressionisamathematicalmodelingapproachthatcanbeusedtodescribetherelationshipofseveralindependentvariablesX1,X2,...,Xktoadependentvariableand/orpredictitsvalue.Todoso,itusesalogisticfunction,whichdescribesthemathematicalformonwhichthelogisticmodelisbased.Thefactthatthelogisticfunctionf(z)rangesbetween0and1istheprimaryreasonthelogisticmodelissopopular.Themodelisdesignedtodescribeaprobability,whichisalwayssomenumberbetween0and1.

Figure1:Logisticfunctionandgraphicalinterpretation

SupportVectorMachine

SupportVectorMachine(SVM)isoneofthemostextensivelyusedsupervisedmachinelearningalgorithmsinthefieldoftextclassification.Givenasetofpointsof2typesinNdimensionalplace,SVMgeneratesa(N—1)dimensionalhyperplanetoseparatethosepointsinto2groups.Itcomputesthelinearseparationsurfacewithamaximummarginforagiventrainingset.Whenalinearseparationsurfacedoesnotexist,forexample,inthepresenceofnoisydata,SVMsalgorithmswithaslackvariableareappropriate.ThisClassifierattemptstopartitionthedataspacewiththeuseoflinearornon-lineardelineationsbetweenthedifferentclasses.Thebesthyperplanewouldbethe

onewiththelargestpositivevectorsandseparatingmostofthedatanodes.Thisisanextremelypowerfulclassificationmachinethatcanbeappliedtoawiderangeofdatanormalizationproblems.

Figure2:HyperplanegeneratedbyaSVM

DecisionTrees

Adecisiontreeisadecisionsupporttoolthatusesatree-likegraphormodelofdecisionsandtheirpossibleconsequences,includingchance-eventoutcomes,resourcecosts,andutility.InaDecisiontree,therearethreetypesofnodes,whicharetheRootNode,theDecisionNodeandtheLeaforTerminalNode.TheRootnoderepresentstheentirepopulationorsampleandthisfurthergetsdividedintotwoormorehomogeneoussets,theDecisionnodesareusedtomakeanydecisionandhavemultiplebranches,whereasTerminalnodesaretheoutputofthosedecisionsanddonotcontainanyfurtherbranches.

Figure3:DecisionTreerepresentingeachofthenodes

Inordertopredictaclasslabelforarecord,thealgorithmstartsfromtherootofthetree.Itcomparesthevaluesoftherootattributewiththerecord’sattribute,and,onthebasisofcomparison,itfollowsthebranchcorrespondingtothatvalueandjumptothenextnode.Morespecifically,thecompleteprocesscanbedividedinthefollowingsteps:

Beginthetreewiththerootnode,saysS,whichcontainsthecompletedataset.

FindthebestattributeinthedatasetusingAttributeSelectionMeasure(ASM).

DividetheSintosubsetsthatcontainspossiblevaluesforthebestattributes.

Generatethedecisiontreenode,whichcontainsthebestattribute.

Recursivelymakenewdecisiontreesusingthesubsetsofthedatasetcreatedinstep-3.Continuethisprocessuntilastageisreachedwhereyoucannotfurtherclassifythenodesandcalledthefinalnodeasaleafnode.

k-NearestNeighbor

k-NearestNeighborisamethodthatsimplysearchestheclosestobservationstotheoneyouaretryingtopredictandclassifiesthepointofinterestbasedonmostofthedataaroundit.Itisasupervisedalgorithmsothetrainingdatasetislabeled,withtheclassorexpectedresultgiven"arow"ofdata.Itisalsoinstancebasedsoitdoesnotexplicitlylearnamodel(suchasLogisticRegressionordecisiontrees).Insteaditmemorizesthetraininginstancesthatareusedasa“knowledgebase”forthepredictionphase.

Figure4:GraphicalexampleofaKNNvotingprocess

NaïveBayes

ANaïveBayesclassifierisaprobabilisticclassifierbasedonBayestheorem.Itisaconditionalprobabilitymodel.Themodeliscallednaiveasitoperatesontheassumptionthatalltheinputdatavaluesareunrelatedtoeachother.Whilethiscannottakeplaceintherealworld,thissimple

algorithmcanbeappliedtoamultitudeofnormalizeddataflowstopredictresultswithagreatdegreeofaccuracy.

Thereare3maintypesofNaiveBayesalgorithms:

Gaussian:Itisusedinclassificationanditassumesthatfeaturesfollowanormaldistribution.

Multinomial:Thisoneisusedfordiscretecounts.

Bernoulliorbinomial:Thebinomialmodelisusefulifthefeaturevectorsarebinary.

Figure5:NaïveBayesrepresentationwherethealgorithmfindscommonfeatures.

Randomforest

TheRandomForestalgorithmconsistsofalargenumberofindividualdecisiontreesthatoperateasanensemble.Thealgorithmestablishestheoutcomebasedonthepredictionsofthedecisiontrees.Eachindividualtreeintherandomforestspitsoutaclasspredictionandtheclasswiththemostvotesbecomethemodelprediction.

Figure6:Randomforestcomposedby9decisiontreesvotingtheclassresult.

Arandomforesteradicatesthelimitationsofadecisiontreealgorithm.Itreducestheoverfittingofdatasetsandincreasesprecision.

StudyoftheavailableHardwaresystems

BSChasprovidedtwodifferentaccountsinordertofulfillthisproject.

AnaccountforMarensotrum4withanx86architecture.Eachcomputingmodulehasthefollowingcharacteristics:

2xIntelXeonPlatinum816024Cat2.1GHz

216nodeswith12x32GBDDR4-2667DIMMS(8GB/core)

3240nodeswith12x8GBDDR4-2667DIMMS(2GB/core)

Interconnectionnetworks:

100GbIntelOmni-PathFull-FatTree

10GbEthernet

OperatingSystem:SUSELinuxEnterpriseServer12SP2AnaccountfortheMareNostrum4CTEARMmachine

A64FXCPU(1Armv8.2-A+SVEchip)@2.20GHz(groupingthecoresin4CMG-CoreMemorygroup-with12cores/CMGandanadditionalassistantcoreperCMGfortheOperatingsystem,addingatotalof48cores+4system-corespernode.TheARMv8.2-AcoreshaveavailabletheScalableVectorExtension(SVE)SIMDinstructionsetupto512-bitvectorimplementation.

32GBofmainmemoryHBM2

TofuDnetwork

SinglePortInfinibandEDR

Theoperatingsystemis,RedHatEnterpriseLinuxServer8.1

StudyofJavaandPythonprograminglanguages

Java

Javaisahigh-level,object-oriented,general-purposeprogramminglanguagewidelyusedinpersonalcomputers,datacenters,gameconsoles,supercomputers,mobilephonesandtheInternetapplications.Itwasoriginallydevelopedin1991byJamesGosling,aCanadiancomputerscientist,atwhatwasthenSunMicrosystems,intheU.S.stateofCalifornia.Today,afterdecadesofeffect,Javahasbeendevelopedintoafullyfunctional,multipurpose,andpowerfullanguagesuitableforbothindividualandenterpriseusers.

Figure7:Javaarchitecturestructure

ThemaincomponentsofJavaare:TheJavaVirtualMachine(JVM),theJavaRuntimeEnvironment(JRE)andtheJavaDevelopmentKit(JDK).

TheJavaVirtualMachine(JVM)istheruntimeengineoftheJavaPlatform,whichallowsanyprogramwritteninJavaorotherlanguagecompiledintoJavabytecodetorunonanycomputerthathasanativeJVM.Itprovidesthefunctionalityofimportantsubsystemssuchasgarbagecollection,memorymanagementandsecurity.JVMisplatform-independentanditcanbecustomizedandconfiguredusingaVirtualinterfaceitprovideswhichisnotmachine-dependentandisalsoindependentoftheoperatingsystem.

Figure8:JavaVirtualMachinecomponents

TheJavavirtualmachineThemainsubsystemsare:

ClassLoader:ThisisthesubsystemofJVMusedtoloadclassfiles.Wheneverauserrunajavaprogram,classloaderloadsitfirst.

JVMmemorysubsystem:T

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论