版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖北省随州随县联考2024年数学八年级下册期末复习检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.一次函数y=﹣2x+3的图象不经过的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限2.如图,在四边形中,,交于,平分,,下面结论:①;②是等边三角形;③;④,其中正确的有A.1个 B.2个 C.3个 D.4个3.一次函数ymx的图像过点(0,2),且y随x的增大而增大,则m的值为()A.1 B.3 C.1 D.1或34.如果等边三角形的边长为4,那么等边三角形的中位线长为A. B.4 C.6 D.85.如图,在平面直角坐标系中,□的顶点、、的坐标分别是,,,则顶点的坐标是().A. B. C. D.6.将矩形纸片ABCD按如图所示的方式折叠,AE、EF为折痕,∠BAE=30°,AB=,折叠后,点C落在AD边上的C1处,并且点B落在EC1边上的B1处.则BC的长为()A. B.3 C.2 D.27.如图,点M是直线y=2x+3上的动点,过点M作MN垂直于x轴于点N,y轴上是否存在点P,使得△MNP为等腰直角三角形,则符合条件的点P有(提示:直角三角形斜边上的中线等于斜边的一半)()A.2个 B.3个 C.4个 D.5个8.某同学五天内每天完成家庭作业的时间(时)分别为2,3,2,1,2,则对这组数据的下列说法中错误的是()A.平均数是2 B.众数是2 C.中位数是2 D.方差是29.如图,在中,,以顶点为圆心,适当长为半径画弧,分别交,于点,,再分别以点,为圆心,大于的长为半径画弧,两弧交于点,作射线交边于点,若,,则的面积是()A.15 B.30 C.45 D.6010.在△ABC中,AB=3,BC=4,AC=2,D,E,F分别为AB,BC,AC中点,连接DF,FE,则四边形DBEF的周长是(
)A.5 B.7 C.9 D.1111.已知a、b是方程x2-2x-1=0的两根,则a2+a+3b的值是()A.7B.5C.-5D.-712.一次函数在平面直角坐标系内的图像如图所示,则k和b的取值范围是()A., B., C., D.,二、填空题(每题4分,共24分)13.小数0.00002l用科学记数法表示为_____.14.函数的自变量x的取值范围是.15.当a=______时,最简二次根式与是同类二次根式.16.《九章算术》中的“折竹抵地”问题:今有竹高一丈,末折抵地,去根六尺.问折高者几何?意思是:一根竹子,原高一丈(一丈=10尺),一阵风将竹子折断,其竹梢恰好抵地,抵地处离竹子底部6尺远,问折断处离地面的高度是多少?设折断处离地面的高度为x尺,则可列方程为_______________.17.商店购进一批文具盒,进价每个4元,零售价每个6元,为促销决定打折销售,但利润率仍然不低于20%,那么该文具盒实际价格最多可打___________折销售18.矩形中,对角线交于点,,则的长是__________.三、解答题(共78分)19.(8分)某商店购进甲、乙两种商品,已知每件甲种商品的价格比每件乙种商品的价格贵5元,用360元购买甲种商品的件数恰好与用300元购买乙种商品的件数相同.(1)求甲、乙两种商品每件的价格各是多少元?(2)若商店计划购买这两种商品共40件,且投入的经费不超过1150元,那么,最多可购买多少件甲种商品?20.(8分)如图所示,△ABC中,D是BC边上一点,E是AD的中点,过点A作BC的平行线交CE的延长线于F,且AF=BD,连接BF.(1)求证:D是BC的中点;(2)若AB=AC,试判断四边形AFBD的形状,并证明你的结论.21.(8分)如图,在ABCD中,经过A,C两点分别作AE⊥BD,CF⊥BD,E,F为垂足.(1)求证:△AED≌△CFB;(2)求证:四边形AFCE是平行四边形.22.(10分)如图,在平行四边形ABCD中,边AB的垂直平分线交AD于点E,交CB的延长线于点F,连接AF,BE.(1)求证:△AGE≌△BGF;(2)试判断四边形AFBE的形状,并说明理由.23.(10分)如图,一次函数与反比例函数的图象交于A(1,4),B(4,n)两点.(1)求反比例函数和一次函数的解析式;(2)点P是x轴上的一动点,当PA+PB最小时,求点P的坐标;(3)观察图象,直接写出不等式的解集.24.(10分)如图,已知直线l1的解析式为y1=-x+b,直线l2的解析式为:y2=kx+4,l1与x轴交于点B,l1与l2交于点A(-1,2).(1)求k,b的值;(2)求三角形ABC的面积.25.(12分)如图,在中,点在边上,点在边的延长线上,且,与交于点.(1)求证:;(2)若点是的中点,,求边的长.26.解不等式组,并把解集在数轴上表示出来.
参考答案一、选择题(每题4分,共48分)1、C【解析】试题解析:∵k=-2<0,∴一次函数经过二四象限;∵b=3>0,∴一次函数又经过第一象限,∴一次函数y=-x+3的图象不经过第三象限,故选C.2、C【解析】
由两组对边平行证明四边形AECD是平行四边形,由AD=DC得出四边形AECD是菱形,得出AE=EC=CD=AD,则∠EAC=∠ECA,由角平分线定义得出∠EAB=∠EAC,则∠EAB=∠EAC=∠ECA,证出∠EAB=∠EAC=∠ECA=30°,则BE=AE,AC=2AB,①正确;由AO=CO得出AB=AO,由∠EAB=∠EAC=30°得出∠BAO=60°,则△ABO是等边三角形,②正确;由菱形的性质得出S△ADC=S△AEC=AB•CE,S△ABE=AB•BE,由BE=AE=CE,则S△ADC=2S△ABE,③错误;由DC=AE,BE=AE,则DC=2BE,④正确;即可得出结果.【详解】解:∵AD∥BC,AE∥CD,
∴四边形AECD是平行四边形,
∵AD=DC,
∴四边形AECD是菱形,
∴AE=EC=CD=AD,
∴∠EAC=∠ECA,
∵AE平分∠BAC,
∴∠EAB=∠EAC,
∴∠EAB=∠EAC=∠ECA,
∵∠ABC=90°,
∴∠EAB=∠EAC=∠ECA=30°,
∴BE=AE,AC=2AB,①正确;
∵AO=CO,
∴AB=AO,
∵∠EAB=∠EAC=30°,
∴∠BAO=60°,
∴△ABO是等边三角形,②正确;
∵四边形AECD是菱形,
∴S△ADC=S△AEC=AB•CE,
S△ABE=AB•BE,
∵BE=AE=CE,
∴S△ADC=2S△ABE,③错误;
∵DC=AE,BE=AE,
∴DC=2BE,④正确;
故选:C.【点睛】本题考查平行四边形的判定、菱形的判定与性质、角平分线定义、等边三角形的判定、含30°角直角三角形的性质、三角形面积的计算等知识,熟练掌握菱形的性质与含30°角直角三角形的性质是解题关键.3、B【解析】
先根据函数的增减性判断出m的符号,再把点(1,2)代入求出m的值即可.【详解】∵一次函数y=mx+|m-1|中y随x的增大而增大,∴m>1.∵一次函数y=mx+|m-1|的图象过点(1,2),∴当x=1时,|m-1|=2,解得m1=3,m2=-1<1(舍去).故选B.【点睛】本题考查的是一次函数图象上点的坐标特点及一次函数的性质,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.4、A【解析】试题分析:根据三角形的中位线等于第三边一半的性质,得这个等边三角形的中位线长为2。故选A。5、C【解析】
由平行四边形的对边相等且互相平行可得AB=CD,CD∥AB,因为AB=5,点D的横坐标为2,所以点C的横坐标为7,根据点D的纵坐标和点C的纵坐标相同即可的解.【详解】∵四边形ABCD为平行四边形,AB=5,∴AB=CD=5,∵点D的横坐标为2,∴点C的横坐标为2+5=7,∵AB∥CD,∴点D和点C的纵坐标相等为3,∴C点的坐标为(7,3).故选:C.【点睛】本题考查平行四边形的性质以及坐标与图形的性质,解题的关键是熟知与x轴平行的点纵坐标都相等,将点向右移动几个单位横坐标就加几个单位.6、B【解析】试题分析:由三角函数易得BE,AE长,根据翻折和对边平行可得△AEC1和△CEC1为等边三角形,那么就得到EC长,相加即可.解:连接CC1.在Rt△ABE中,∠BAE=30°,AB=,∴BE=AB×tan30°=1,AE=2,∠AEB1=∠AEB=60°,∵四边形ABCD是矩形∴AD∥BC,∴∠C1AE=∠AEB=60°,∴△AEC1为等边三角形,同理△CC1E也为等边三角形,∴EC=EC1=AE=2,∴BC=BE+EC=3,故选B.7、C【解析】
根据等腰直角三角形的定义,由题意,应分两类情况讨论:当MN为直角边时和当MN为斜边时点P的位置的求法.【详解】当M运动到(-1,1)时,ON=1,MN=1,∵MN⊥x轴,所以由ON=MN可知,(0,0)和(0,1)就是符合条件的P点;又当M运动到第三象限时,要MN=MP,且PM⊥MN,设点M(x,2x+3),则有-x=-(2x+3),解得x=-3,所以点P坐标为(0,-3).如若MN为斜边时,则∠ONP=45°,所以ON=OP,设点M(x,2x+3),则有-x=-(2x+3),化简得-2x=-2x-3,这方程无解,所以这时不存在符合条件的P点;又当点M′在第二象限,M′N′为斜边时,这时N′P=M′P,∠M′N′P=45°,设点M′(x,2x+3),则OP=ON′,而OP=M′N′,∴有-x=(2x+3),解得x=-,这时点P的坐标为(0,-).因此,符合条件的点P坐标是(0,0),(0,-),(0,-3),(0,1).故答案选C,【点睛】本题主要采用分类讨论法,来求得符合条件的点P坐标.题中没有明确说明哪个边是直角边,哪条边是斜边,所以分情况说明,在证明时,注意点M的坐标表示方法以及坐标与线段长之间的转换.8、D【解析】
根据众数、中位数、平均数和方差的计算公式分别进行解答,即可得出答案.【详解】解:平均数是:(2+3+2+1+2)÷5=2;数据2出现了3次,次数最多,则众数是2;数据按从小到大排列:1,2,2,2,3,则中位数是2;方差是:[(2﹣2)2+(3﹣2)2+(2﹣2)2+(1﹣2)2+(2﹣2)2]=,则说法中错误的是D;故选D.【点睛】本题考查众数、中位数、平均数和方差,平均数表示一组数据的平均程度.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);方差是用来衡量一组数据波动大小的量;众数是一组数据中出现次数最多的数.9、B【解析】
作DE⊥AB于E,根据角平分线的性质得到DE=DC=4,根据三角形的面积公式计算即可.【详解】解:作DE⊥AB于E,由基本尺规作图可知,AD是△ABC的角平分线,∵∠C=90°,DE⊥AB,∴DE=CD=4,∴△ABD的面积=AB×DE=×15×4=30,故选:B.【点睛】本题考查的是角平分线的性质、基本作图,掌握角的平分线上的点到角的两边的距离相等是解题的关键.10、B【解析】试题解析:∵D、E、F分别为AB、BC、AC中点,∴DF=BC=2,DF∥BC,EF=AB=,EF∥AB,∴四边形DBEF为平行四边形,∴四边形DBEF的周长=2(DF+EF)=2×(2+)=1.故选B.11、A【解析】分析:要求a²+a+3b的值,先把此代数式变形为两根之积或两根之和的形式,代入数值计算即可,注意计算不要出错.详解:由题意知,a+b=2,x²=2x+1,即a²=2a+1,∴a²+a+3b=2a+1+a+3b=3(a+b)+1=3×2+1=1.故选A.点睛:主要考查了根与系数的关系及一元二次方程的解,难度适中,关键掌握用根与系数的关系与代数式变形相结合进行解题.12、A【解析】
根据一次函数的图象经过的象限与系数的关系进行解答即可.【详解】∵一次函数y=kx+b的图象经过一、二、三象限,
∴k>0,b>0.
故选A.【点睛】本题考查一次函数图象与系数的关系,解题的关键是掌握一次函数图象与系数的关系.二、填空题(每题4分,共24分)13、2.1×10﹣1【解析】
绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:小数0.00002l用科学记数法表示为2.1×10-1.
故答案为2.1×10-1.【点睛】本题考查了用科学记数法表示较小的数,一般形式为a×,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.14、.【解析】求函数自变量的取值范围,就是求函数解析式有意义的条件,根据二次根式被开方数必须是非负数的条件,要使在实数范围内有意义,必须.15、1.【解析】
同类二次根式是指化成最简二次根式后,被开方数相同的二次根式叫做同类二次根式.【详解】解:∵最简二次根式与是同类二次根式,∴a﹣2=10﹣2a,解得:a=1故答案为:1.【点睛】本题考查同类二次根式.16、x1+61=(10-x)1【解析】
根据题意画出图形,由题意则有AC=x,AB=10﹣x,BC=6,根据勾股定理即可列出关于x的方程.【详解】根据题意画出图形,折断处离地面的高度为x尺,则AB=10﹣x,BC=6,在Rt△ABC中,AC1+BC1=AB1,即x1+61=(10﹣x)1,故答案为x1+61=(10﹣x)1.【点睛】本题考查了勾股定理的应用,正确画出图形,熟练掌握勾股定理的内容是解题的关键.17、8【解析】
设该文具盒实际价格可打x折销售,根据利润率不低于20%列不等式进行求解即可得.【详解】设该文具盒实际价格可打x折销售,由题意得:6×-4≥4×20%,解得:x≥8,故答案为8.【点睛】本题考查了一元一次不等式的应用,弄清题意,找准不等关系列出不等式是解题的关键.18、【解析】
根据矩形的对角线互相平分且相等可得OA=OC,然后由勾股定理列出方程求解得出BC的长和AC的长,然后根据矩形的对角线互相平分可得AO的长。【详解】解:如图,在矩形ABCD中,OA=OC,∵∠AOB=60°,∠ABC=90°∴∠BAC=30°∴AC=2BC设BC=x,则AC=2x∴解得x=,则AC=2x=2∴AO==.【点睛】本题考查了矩形的对角线互相平分且相等的性质和含30°的直角三角形的性质,以及勾股定理的应用,是基础题。三、解答题(共78分)19、(1)甲种商品每件的价格是30元,乙种商品每件的价格是25元;(2)最多可购买30件甲种商品.【解析】
(1)设甲种商品每件的价格是x元,则乙种商品每件的价格是(x-5)元,根据"用360元购买甲种商品的件数怡好与用300元购买乙种商品的件数相同",列出关于x的分式方程,解之经过验证即可,(2)设购买m件甲种商品,则购买(40-m)件乙种商品,根据商店计划购买这两种商品共40件,且投入的经费不超过1150元",列出关于m的一元一次不等式,解之即可【详解】解:(1)设甲种商品每件的价格是x元,则乙种商品每件的价格是(x﹣5)元,根据题意得:,解得:x=30,经检验,x=30是方程的解且符合意义,30﹣5=25,答:甲种商品每件的价格是30元,乙种商品每件的价格是25元,(2)设购买m件甲种商品,则购买(40﹣m)件乙种商品,根据题意得:30m+25(40﹣m)≤1150,解得:m≤30,答:最多可购买30件甲种商品.【点睛】此题考查一元一次不等式的应用和分式方程的应用,解题关键在于列出方程20、(1)见解析;(2)若AB=AC,则四边形AFBD是矩形.理由见解析【解析】
(1)先说明∠AFE=∠DCE,再证明△AEF和△DEC全等,最后根据全等三角形的性质和等量关系即可证明;(2)由(1)可得AF平行且等于BD,即四边形AFBD是平行四边形;再利用等腰三角形三线合一,可得AD⊥BC,即∠ADB=90°,即可证明四边形AFBD是矩形.【详解】(1)证明:∵AF∥BC,∴∠AFE=∠DCE,∵点E为AD的中点,∴AE=DE,在△AEF和△DEC中,,∴△AEF≌△DEC(AAS),∴AF=CD,∵AF=BD,∴CD=BD,∴D是BC的中点;(2)解:若AB=AC,则四边形AFBD是矩形.理由如下:∵△AEF≌△DEC,∴AF=CD,∵AF=BD,∴CD=BD;∵AF∥BD,AF=BD,∴四边形AFBD是平行四边形,∵AB=AC,BD=CD,∴∠ADB=90°,∴平行四边形AFBD是矩形.【点睛】本题考查了矩形的判定、全等三角形的判定与性质、平行四边形的判定等知识点,掌握矩形的判定方法是解答本题的关键.21、(1)见解析;(2)见解析.【解析】
(1)根据平行四边形的性质可得AD=BC,∠CBF=∠ADE,再根据垂线的性质可得∠CFB=∠AED=90°,再根据全等三角形的判定(角角边)来证明即可;(2)根据全等三角形的性质可得AE=CF,再由AE⊥BD,CF⊥BD可得AE∥CF,根据一组对边平行且相等的四边形为平行四边形即可证明.【详解】(1)证明:∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∴∠CBF=∠ADE,∵AE⊥BD,CF⊥BD,∴∠CFB=∠AED=90°,∴△AED≌△CFB(AAS).(2)证明:∵△AED≌△CFB,∴AE=CF,∵AE⊥BD,CF⊥BD,∴AE∥CF,∴四边形AFCE是平行四边形.【点睛】全等三角形的判定和性质及平行四边形的判定和性质是本题的考点,熟练掌握基础知识是解题的关键.22、(1)证明见解析(2)四边形AFBE是菱形【解析】试题分析:(1)由平行四边形的性质得出AD∥BC,得出∠AEG=∠BFG,由AAS证明△AGE≌△BGF即可;(2)由全等三角形的性质得出AE=BF,由AD∥BC,证出四边形AFBE是平行四边形,再根据EF⊥AB,即可得出结论.试题解析:(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠AEG=∠BFG,∵EF垂直平分AB,∴AG=BG,在△AGEH和△BGF中,∵∠AEG=∠BFG,∠AGE=∠BGF,AG=BG,∴△AGE≌△BGF(AAS);(2)解:四边形AFBE是菱形,理由如下:∵△AGE≌△BGF,∴AE=BF,∵AD∥BC,∴四边形AFBE是平行四边形,又∵EF⊥AB,∴四边形AFBE是菱形.考点:平行四边形的性质;全等三角形的判定与性质;线段垂直平分线的性质;探究型.23、(1)反比例函数的解析式为;一次函数的解析式为y=-x+5;(2)点P的坐标为(,0);(3)x<0或1≤x≤4【解析】
(1)将点A(1,4)代入可得m的值,求得反比例函数的解析式;根据反比例函数解析式求得点B坐标,再由A、B两点的坐标可得一次函数的解析式;(2)作B关于x轴的对称点B′,连接AB′,交x轴于P,此时PA+PB=AB′最小,根据B的坐标求得B′的坐标,然后根据待定系数法求得直线AB′的解析式,进而求得与x轴的交点P即可.(3)根据图象得出不等式的解集即可。【详解】解:(1)把A(1,4)代入,得:m=4,
∴反比例函数的解析式为;把B(4,n)代入,得:n=1,
∴B(4,1),
把A(1,4)、(4,1)代入y=kx+b,得:∴一次函数的解析式为y=-x+5;(2)如图,作B关于x轴
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 试用期销售合同范本(3篇)
- 心理疏导服务团队方案(3篇)
- 新教材高考地理二轮复习三10个长效热点综合专项训练热点3生物多样性与环境含答案
- 武汉市部分重点中学 2024-2025 学年度上学期期中联考 高二地理试卷
- 陕西省西安市曲江第一小学2024-2025学年四年级上学期期中学业水平测试科学试题(无答案)
- 2025年高考物理专项复习:机械波及光的运用(分层练)(解析版)
- 广告制作合同范本怎么写
- 2024年证券交易市场委托交易规则
- 绿色环保课程设计
- 农贸市场摊位租赁条款
- 可分离变量的微分方程(8)课件
- 苏教版初中化学常见气体的检验与除杂教案
- 苏教版小学一年级数学上册期末试卷
- 火灾报警系统技术规范书
- 苏J01-2005图集
- 鱼塘租赁合同
- 装饰装修阶段重大危险源清单2(精华版)
- (精选)台阶和树木移除申请书
- 建筑设计知识:厂房平面设计生产工艺流程.doc
- hydac压力继电器说明书
- 中成药上市公司组织架构及部门职责
评论
0/150
提交评论