版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届山东省日照莒县联考数学八年级下册期末教学质量检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.某商品的标价比成本价高m%,现根据市场需要,该商品需降价n%岀售.为了使获利不低于10%,n应满足()A. B.C. D.2.七名学生在一分钟内的跳绳个数分别是:150、140、100、110、130、110、120,设这组数据的平均数是a,中位数是b,众数是c,则有()A.c>b>a B.b>c>a C.c>a>b D.a>b>c3.如图,在平行四边形ABCD中,对角线AC和BD相交于点O,点E是BC边的中点,OE=1,则AB的长为()A.2 B.1C. D.44.如果一个正多边形的一个外角为30°,那么这个正多边形的边数是()A.6 B.11 C.12 D.185.计算(2+)(﹣2)的结果是()A.1 B.0 C.﹣1 D.﹣76.我市某中学举办了一次以“我的中国梦”为主题的演讲比赛,最后确定名同学参加决赛,他们的决赛成绩各不相同,其中小辉已经知道自己的成绩,但能否进前名,他还必须清楚这名同学成绩的()A.众数 B.平均数 C.方差 D.中位数7.在RtABC中,∠C90,AB3,AC2,则BC的值()A. B. C. D.8.如图,在菱形ABCD中,E,F分别是AB,AC的中点,若∠B=50°,则∠AFE的度数为()A.50° B.60° C.65° D.70°9.用配方法解方程时,原方程应变形为()A. B. C. D.10.将四根长度相等的细木条首尾相接,用钉子钉成四边形ABCD,转动这个四边形,使它形状改变,当时,如图1,测得AC=2,当时,如图2,则AC的值为()A.B.C.2D.二、填空题(每小题3分,共24分)11.如图,△ABC中,AD是中线,AE是角平分线,CF⊥AE于F,AB=5,AC=2,则DF的长为_________.12.用反证法证明“等腰三角形的底角是锐角”时,首先应假设_____13.某中学规定学生的学期体育成绩满分为100分,其中课外体育占20%,期中考试成绩占30%,期末考试成绩占50%.小彤的三项成绩(百分制)依次为95、90、88,则小彤这学期的体育成绩为______分.14.如图,在△ABC中,AB=3,AC=5,点D,E,F分别是AB,BC,AC的中点,则四边形ADEF的周长为_____.15.已知一组数据1,2,0,-1,x,1的平均数是1,则这组数据的极差为____.16.一个菱形的边长为5,一条对角线长为6,则这个菱形另一条对角线长为_____.17.如图,□OABC的顶点O,A的坐标分别为(0,0),(6,0),B(8,2),Q(5,3),在平面内有一条过点Q的直线将平行四边形OABC的面积分成相等的两部分,则该直线的解析式为___.18.已知一组数据,,,,,,则这组数据的众数是________.三、解答题(共66分)19.(10分)水果批发市场有一种高档水果,如果每千克盈利(毛利润)10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销量将减少20千克.(1)若以每千克能盈利18元的单价出售,问每天的总毛利润为多少元?(2)现市场要保证每天总毛利润6000元,同时又要使顾客得到实惠,则每千克应涨价多少元?20.(6分)某县教育局为了了解学生对体育立定跳远()、跳绳()、掷实心球()、中长跑()四个项目的喜爱程度(每人只选一项),确定中考体育考试项目,特对八年级某班进行了调查,并绘制成如下频数、频率统计表和扇形统计图:(1)求出这次调查的总人数;(2)求出表中的值;(3)若该校八年级有学生1200人,请你算出喜爱跳绳的人数,并发表你的看法.21.(6分)某校围绕“扫黑除恶”专项斗争进行了普法宣传,然后在各班级分别随机抽取了5名同学进行了测试.规定:95分或以上为优秀。其中八(1)班和八(2)班成绩如下:八(1)班:100,100,90,90,90;八(2)班:95,95,95,95,90;(1)八(1)班和八(2)班的优秀率分别是多少?(2)通过计算说明:哪个班成绩相对整齐?(3)若该校共有1000名学生,则通过这两个班级的成绩分析:该校大约有多少学生达到优秀?22.(8分)某文化用品店用2000元购进一批学生书包,面市后发现供不应求,商店又购进第二批同样的书包,所购数量是第一批购进数量的3倍,但单价贵了4元,结果第二批用了6300元。求第一批书包的单价。23.(8分)材料一:如图1,由课本91页例2画函数y=﹣6x与y=﹣6x+5可知,直线y=﹣6x+5可以由直线y=﹣6x向上平移5个单位长度得到由此我们得到正确的结论一:在直线L1:y=K1x+b1与直线L2:y=K2x+b2中,如果K1=K2且b1≠b2,那么L1∥L2,反过来,也成立.材料二:如图2,由课本92页例3画函数y=2x﹣1与y=﹣0.5x+1可知,利用所学知识一定能证出这两条直线是互相垂直的.由此我们得到正确的结论二:在直线L1:y=k1x+b1与L2:y=k2x+b2中,如果k1·k2=-1那么L1⊥L2,反过来,也成立应用举例已知直线y=﹣x+5与直线y=kx+2互相垂直,则﹣k=﹣1.所以k=6解决问题(1)请写出一条直线解析式______,使它与直线y=x﹣3平行.(2)如图3,点A坐标为(﹣1,0),点P是直线y=﹣3x+2上一动点,当点P运动到何位置时,线段PA的长度最小?并求出此时点P的坐标.24.(8分)某商场进行促销,购物满额即可获得1次抽奖机会,抽奖袋中装有红色、黄色、白色三种除颜色外都相同的小球,从袋子中摸出1个球,红色、黄色、白色分别代表一、二、三等奖.(1)若小明获得1次抽奖机会,小明中奖是事件;(填随机、必然、不可能)(2)小明观察一段时间后发现,平均每8个人中会有1人抽中一等奖,2人抽中二等奖,若袋中共有24个球,请你估算袋中白球的数量;(3)在(2)的条件下,如果在抽奖袋中减少3个白球,那么抽奖一次恰好抽中一等奖的概率是多少?请说明理由.25.(10分)如图①,将直角梯形放在平面直角坐标系中,已知,点在上,且,连结.(1)求证:;(2)如图②,过点作轴于,点在直线上运动,连结和.①当的周长最短时,求点的坐标;②如果点在轴上方,且满足,求的长.26.(10分)如图,在中,,是的垂直平分线.求证:是等腰三角形.
参考答案一、选择题(每小题3分,共30分)1、B【解析】
根据利润=售价-进价,列出出不等式,求解即可.【详解】设成本为a元,由题意可得:则去括号得:整理得:故.故选B.【点睛】考查一元一次不等式的应用,熟练掌握利润=售价-进价是列不等式求解的关键.2、D【解析】
根据将所有数据加在一起除以数据的个数就能得到该组数据的平均数;排序后找到中间两数的平均数即为该组数据的中位数;观察后找到出现次数最多的数即为该组数据的众数,即可求出答案.【详解】该组数据的平均数为:a=(150+140+100+110+130+110+120)÷7=122.86,
将该组数据排序为:100,110,110,120,130,140,150,
该组数据的中位数为:b=120;
该组数据中数字110出现了2次,最多,
该组数据的众数为:c=110;
则a>b>c;
故选D.【点睛】本题考查众数、算术平均数和中位数,解题的关键是掌握众数、算术平均数和中位数的求解方法.3、A【解析】
首先证明OE是△BCD的中位线,再根据平行四边形的性质即可解决问题.【详解】∵四边形ABCD是平行四边形,∴OB=OD,AB=CD,∵BE=EC,∴OE=CD,∵OE=1,∴AB=CD=2,故答案为:A【点睛】此题考查平行四边形的性质,三角形中位线定理,解题关键在于求出OE是△BCD的中位线4、C【解析】试题分析:这个正多边形的边数:360°÷30°=12,故选C.考点:多边形内角与外角.5、C【解析】分析:根据二次根式的乘法法则结合平方差公式进行计算即可.详解:原式=.故选C.点睛:熟记“二次根式的乘法法则和平方差公式”是正确解答本题的关键.6、D【解析】
9人成绩的中位数是第5名,参赛选手要想知道自己是否进入前五名,只需要了解自己的成绩以及全部成绩的中位数,比较即可.【详解】由于总共有9个人,且他们的成绩各不相同,第5名的成绩是中位数,要判断是否进入前5名,故应知道自己的成绩和中位数.故选D【点睛】本题考查了统计量的选择,属于基础题,难度较低,熟练掌握中位数的特性为解答本题的关键.7、A【解析】
根据勾股定理即可求出.【详解】由勾股定理得,.故选.【点睛】本题考查的是勾股定理,掌握勾股定理是解题的关键.8、C【解析】
由菱形的性质和等腰三角形的性质可得∠BCA=∠BAC=65°,由三角形中位线定理可得EF∥BC,即可求解.【详解】解:∵四边形ABCD是菱形∴AB=BC,且∠B=50°∴∠BCA=∠BAC=65°∵E,F分别是AB,AC的中点,∴EF∥BC∴∠AFE=∠BCA=65°故选:C.【点睛】本题考查了菱形的性质,等腰三角形的性质,以及三角形中位线的判定与性质,熟练掌握菱形的性质是本题的关键.9、A【解析】
先将常数项移到右侧,然后在方程两边同时加上一次项一半的平方,左侧配方即可.【详解】,x2-4x=9,x2-4x+4=9+4,,故选A.【点睛】本题考查了配方法,正确掌握配方法的步骤以及注意事项是解题的关键.10、D【解析】
图1中根据勾股定理即可求得正方形的边长,图2根据有一个角是60°的等腰三角形是等边三角形即可求得.【详解】如图1,∵AB=BC=CD=DA,∠B=90°,
∴四边形ABCD是正方形,
连接AC,则AB2+BC2=AC2,
∴AB=BC===,
如图2,∠B=60°,连接AC,
∴△ABC为等边三角形,
∴AC=AB=BC=.
【点睛】本题考查正方形的性质,勾股定理以及等边三角形的判定和性质,利用勾股定理得出正方形的边长是关键.二、填空题(每小题3分,共24分)11、【解析】
解:如图,延长CF交AB于点G,∵在△AFG和△AFC中,∠GAF=∠CAF,AF=AF,∠AFG=∠AFC,∴△AFG≌△AFC(ASA).∴AC=AG,GF=CF.又∵点D是BC中点,∴DF是△CBG的中位线.∴DF=BG=(AB﹣AG)=(AB﹣AC)=.故答案为:.12、等腰三角形的底角是钝角或直角【解析】根据反证法的第一步:假设结论不成立设,可以假设“等腰三角形的两底都是直角或钝角”.
故答案是:等腰三角形的两底都是直角或钝角.13、1【解析】
根据加权平均数的计算公式列出算式,再进行计算即可.【详解】解:根据题意得:
95×20%+1×30%+88×50%=1(分).
即小彤这学期的体育成绩为1分.
故答案为:1.【点睛】本题考查加权平均数,掌握加权平均数的计算公式是解题的关键.14、1【解析】
根据三角形的中位线平行于第三边,并且等于第三边的一半,以及中点的定义可得DE=AF=12AC,EF=AD=12AB【详解】解:∵在△ABC中,D、E、F分别是AB、BC、AC的中点,∴DE=AF=12AC=2.5,EF=AD=12∴四边形ADEF的周长是(2.5+1.5)×2=1.故答案为:1.【点睛】本题考查了三角形中位线定理,中点的定义以及四边形周长的定义.15、4【解析】
根据平均数的定义求出x的值,再根据极差的定义解答.【详解】1+2+0-1+x+1=1×6,所以x=3,则这组数据的极差=3-(-1)=4,故答案为:4.【点睛】本题考查了算术平均数、极差,熟练掌握算术平均数、极差的概念以及求解方法是解题的关键.16、1【解析】
根据菱形对角线互相垂直平分可得AO=OC,BO=OD,△ABO为Rt△;在Rt△ABO中,已知AB,AO的长,即可求BO的长,根据BO的长即可求BD的长.【详解】如图,由题意知,AB=5,AC=6,∴AO=OC=3,∵菱形对角线互相垂直平分,∴△ABO为直角三角形,在Rt△ABO中,AB=5,AO=3,∴BO=AB2-A故BD=2BO=1,故答案为:1.【点睛】本题考查了菱形对角线互相垂直平分的性质,考查了勾股定理在直角三角形中的运用,本题中根据勾股定理求BO的值是解题的关键.17、y=2x﹣1.【解析】
将▱OABC的面积分成相等的两部分,所以直线必过平行四边形的中心D,由B的坐标即可求出其中心坐标D,设过直线的解析式为y=kx+b,把D和Q的坐标代入即可求出直线解析式即可.【详解】解:∵B(8,2),将平行四边形OABC的面积分成相等的两部分的直线一定过平行四边形OABC的对称中心,
平行四边形OABC的对称中心D(4,1),
设直线MD的解析式为y=kx+b,
∴
即,
∴该直线的函数表达式为y=2x﹣1,
因此,本题正确答案是:y=2x﹣1.【点睛】本题考察平行四边形与函数的综合运用,能够找出对称中心是解题关键.18、45【解析】
根据众数的概念:一组数据中出现次数最多的数值即为众数,即可得到答案【详解】解:∵这组数据中45出现两次,出现次数最多∴众数是45故答案为45【点睛】本题考查众数的概念,熟练掌握众数的概念为解题关键三、解答题(共66分)19、(1)6120元(2)答应涨价为5元.【解析】【分析】(1)根据总毛利润=每千克能盈利18元×卖出的数量即可计算出结果;(2)设涨价x元,则日销售量为500-20x,根据总毛利润=每千克能盈利×卖出的数量即可列方程求解.【详解】(1)(500-8×20)×18=6120元,答:每天的总毛利润是6120元;(2)设每千克涨元,,,,(舍),又由于顾客得到实惠,答应涨价为5元.【点睛】本题考查了一元二次方程的应用,弄清题意,找准等量关系列出方程是解题的关键.20、(1)60;(2);(3)240人,看法见解析【解析】
(1)用C科目人数除以其所占比例;
(2)根据频数=频率×总人数求解可得;
(3)总人数乘以样本中B科目人数所占比例,根据图表得出正确的信息即可.【详解】解:(1)这次调查的总人数为6÷(36÷360)=60(人);
(2)a=60×0.5=30(人);b=12÷60=0.2;c=6÷60=0.1;d=0.2×60=12(人);
(3)喜爱跳绳的人数为1200×0.2=240(人),
由扇形统计图知喜爱立定跳远的人数占总人数的一半,是四个学科中人数最多的科目.【点睛】本题考查了扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.用到的知识点为:总体数目=部分数目÷相应百分比.21、(1)八(1)班的优秀率:,八(2)班的优秀率:;(2)八(2)班的成绩相对整齐;(3)600人.【解析】
(1)用95分或以上的人数除以总人数即可分别求出八(1)班和八(2)班的优秀率;(2)先分别求出八(1)班和八(2)班的平均数,再计算它们的方差,然后根据方差的定义,方差越小成绩越整齐得出答案;(3)用该校学生总数乘以样本优秀率即可.【详解】解:(1)八(1)班的优秀率是:×100%=40%,八(2)班的优秀率是:×100%=80%;(2)八(1)班的平均成绩是:(100+100+90+90+90)=94,方差是:[2×(100−94)2+3×(90−94)2]=24;八(2)班的平均成绩是:(95+95+95+95+90)=94,方差是:[4×(95−94)2+(90−94)2]=4;∵4<24,即八(2)班的方差<八(1)班的方差,∴八(2)班的成绩相对整齐;(3)1000×=600(人).答:该校大约有600名学生达到优秀.【点睛】本题考查方差的定义:一般地设n个数据x1,x2,…,xn的平均数为,则方差S2=,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.也考查了利用样本估计总体.22、80元【解析】
首先设购进第一批书包的单价是x元,则购进第二批书包的单价是(x+4)元,根据题意可得等量关系:第一批购进的数量×3=第二批购进的数量,由等量关系可得方程,解方程即可.【详解】设第一批书包的单价是每个元,这第二批书包的单价是每个元,根据题意得解这个方程得经检验时所列方程的解.答:第一批书包的单价是每个80元.【点睛】此题主要考查了分式方程的应用,关键是弄清题意,设出未知数,列出方程.列分式方程解应用题的一般步骤:设、列、解、验、答.必须严格按照这5步进行做题,规范解题步骤,另外还要注意完整性.23、(1)y=x;(2)当线段PA的长度最小时,点P的坐标为.【解析】
(1)由两直线平行可得出k1=k2=1、b1≠b2=﹣3,取b1=0即可得出结论;(2)过点A作AP⊥直线y=﹣3x+2于点P,此时线段PA的长度最小,由两直线平行可设直线PA的解析式为y=x+b,由点A的坐标利用待定系数法可求出直线PA的解析式,联立两直线解析式成方程组,再通过解方程组即可求出:当线段PA的长度最小时,点P的坐标.【详解】.解:(1)∵两直线平行,∴k1=k2=1,b1≠b2=﹣3,∴该直线可以为y=x.故答案为y=x.(2)过点A作AP⊥直线y=﹣3x+2于点P,此时线段PA的长度最小,如图所示.∵直线PA与直线y=﹣3x+2垂直,∴设直线PA的解析式为y=x+b.∵点A(﹣1,0)在直线PA上,∴×(﹣1)+b=0,解得:b=,∴直线PA的解析式为y=x+.联立两直线解析式成方程组,得:,解得:.∴当线段PA的长度最小时,点P的坐标为(,).【点睛】本题考查待定系数法求一次函数解析式、垂线段以及两直线平行或相交,解题的关键是:(1)根据材料一找出与已知直线平行的直线;(2)利用点到直线之间垂直线段最短找出点P的位置.24、(1)必然;(2)15个;(3),理由见解析.【解析】
(1)根据题意即可判断为小明中奖是必然事件;(2)先求出抽白球的概率,乘以总球数即可得到袋中白球的数量;(3)先求出红球的个数,再用概率公式进行求解.【详解】(1)必然(2)24×=15(个)答:白球约有15个(3)红球有24×=3(个)总个数24-3=21(个)答:抽总一等奖的概率是【点睛】此题主要考查概率的计算,解题的关键是根据题意找到关系进行求解
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度云南省高校教师资格证之高等教育法规自我检测试卷A卷附答案
- 赣南师范大学《商法》2022-2023学年第一学期期末试卷
- 赣南师范大学《高等代数》2021-2022学年第一学期期末试卷
- 赣南师范大学《体育社会学》2021-2022学年第一学期期末试卷
- 阜阳师范大学《英国文学一》2021-2022学年第一学期期末试卷
- 福建师范大学《语文教学设计》2021-2022学年第一学期期末试卷
- 福建师范大学《信号分析与控制》2022-2023学年第一学期期末试卷
- 福建师范大学《图形语言》2021-2022学年第一学期期末试卷
- 福建师范大学《数字信号处理应用二》2022-2023学年第一学期期末试卷
- 福建师范大学《模拟电子线路》2022-2023学年第一学期期末试卷
- 采伐树木合同模板
- 期中测试卷-2024-2025学年统编版语文三年级上册
- 《气能破岩作业技术规程》征求意见稿编制说明
- 消防救生照明线标准解析
- GB/T 24304-2024动植物油脂茴香胺值的测定
- 第一单元 史前时期:原始社会与中华文明的起源(复习课件)
- 广东省深圳市2023-2024学年高一上学期语文期中试卷(含答案)
- 学校采购课程合同范本
- 2024年公安基础知识考试题库及答案
- 第21课《小圣施威降大圣》公开课一等奖创新教学设计 统编版语文七年级上册-1
- 2023年上半年教师资格证《初中音乐》真题及答案
评论
0/150
提交评论