版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届安徽省蚌埠局属学校数学八年级下册期末达标检测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每题4分,共48分)1.若分式无意义,则x的值为(
)A. B. C. D.2.如图,长方形ABCD中,BE、CE分别平分∠ABC和∠DCB,点E在AD上,①△ABE≌△DCE;②△ABE和△DCE都是等腰直角三角形;③AE=DE;④△BCE是等边三角形,以上结论正确的有()A.1个 B.2个 C.4个 D.3个3.如图,四边形ABCD是正方形,延长BA到点E,使BE=BD,则∠ADE等于(
)A.15.5°
B.22.5°
C.45°
D.67.5°4.以下是回收、绿色包装、节水、低碳四个标志,其中是中心对称图形的是()A. B. C. D.5.计算(2+)(﹣2)的结果是()A.1 B.0 C.﹣1 D.﹣76.如果一个三角形三条边的长分别是7,24,25,则这个三角形的最大内角的度数是()A.30° B.45° C.60° D.90°7.把一元二次方程化为一般形式,正确的是()A. B. C. D.8.用反证法证明“”,应假设()A. B. C. D.9.如图,矩形ABCD的边长AD=3,AB=2,E为AB的中点,F在边BC上,且BF=2FC,AF分别与DE、DB相交于点M,N,则MN的长为()A. B. C. D.10.将三角形纸片△ABC按如图所示的方式折叠,使点B落在边AC上,记为点B′,折痕为EF.已知AB=AC=8,BC=10,若以点B′,F,C为顶点的三角形与△ABC相似,那么BF的长度是().A.5 B. C.或4 D.5或11.已知实数a在数轴上的位置如图所示,则化简的结果为()A.1 B.﹣1 C.1﹣2a D.2a﹣112.一次函数与的图象如图所示,则下列结论:①k<0;②a<0,b<0;③当x=3时,y1=y2;④不等式的解集是x<3,其中正确的结论个数是()A.0 B.1 C.2 D.3二、填空题(每题4分,共24分)13.若b为常数,且﹣bx+1是完全平方式,那么b=_____.14.分式与的最简公分母是__________.15.已知为实数,且,则______.16.如图,已知∠BAC=120º,AB=AC,AC的垂直平分线交BC于点D,则∠ADB=_______;17.不等式1﹣2x≥3的解是_____.18.若是李华同学在求一组数据的方差时,写出的计算过程,则其中的=_____.三、解答题(共78分)19.(8分)某地建设一项水利工程,工程需要运送的土石方总量为160万米1.(1)写出运输公司完成任务所需的时间y(单位:天)与平均每天的工作量x(单位:万米1)之间的函数关系式;(2)当运输公司平均每天的工作量15万米1,完成任务所需的时间是多少?(1)为了能在150天内完成任务,平均每天的工作量至少是多少万米1?20.(8分)我们给出如下定义:把对角线互相垂直的四边形叫做“对角线垂直四边形”.如图,在四边形中,,四边形就是“对角线垂直四边形”.(1)下列四边形,一定是“对角线垂直四边形”的是_________.①平行四边形②矩形③菱形④正方形(2)如图,在“对角线垂直四边形”中,点、、、分别是边、、、的中点,求证:四边形是矩形.21.(8分)A、B两地的距离是80千米,一辆巴士从A地驶出3小时后,一辆轿车也从A地出发,它的速度是巴士的3倍,已知轿车比巴士早20分钟到达B地,试求两车的速度。22.(10分)心理学研究发现,一般情况下,在一节45分钟的课中,学生的注意力随学习时间的变化而变化.开始学习时,学生的注意力逐步增强,中间有一段时间学生的注意力保持较为理想的稳定状态,随后学生的注意力开始分散.经过实验分析可知,学生的注意力指标数y随时间x(分钟)的变化规律如下图所示(其中、分别为线段,为双曲线的一部分)。(1)开始学习后第5分钟时与第35分钟时相比较,何时学生的注意力更集中?(2)某些数学内容的课堂学习大致可分为三个环节:即“教师引导,回顾旧知——自主探索,合作交流——总结归纳,巩固提高”.其中重点环节“自主探索,合作交流”这一过程一般需要30分钟才能完成,为了确保效果,要求学习时的注意力指标数不低于40,请问这样的课堂学习安排是否合理?并说明理由.23.(10分)已知:一次函数的图像经过点A(-1,2)和点B(0,4).(1)求这个一次函数的表达式;(2)请你画出平面直角坐标系,并作出本题中的一次函数的图像.24.(10分)如图1,矩形的顶点、分别在轴与轴上,且点,点,点为矩形、两边上的一个点.(1)当点与重合时,求直线的函数解析式;(2)如图②,当在边上,将矩形沿着折叠,点对应点恰落在边上,求此时点的坐标.(3)是否存在使为等腰三角形?若存在,直接写出点的坐标;若不存在,请说明理由.25.(12分)计算:(1)(2)26.如图,已知矩形ABCD,AD=4,CD=10,P是AB上一动点,M、N、E分别是PD、PC、CD的中点.(1)求证:四边形PMEN是平行四边形;(2)当AP为何值时,四边形PMEN是菱形?并给出证明。
参考答案一、选择题(每题4分,共48分)1、C【解析】
根据分式无意义的条件即可求出答案.【详解】由题意可知:x-1=0,
即x=1,分式无意义,
故选:C.【点睛】此题考查分式无意义的条件,解题的关键是熟练运用分式无意义的条件,本题属于基础题型.2、D【解析】
根据矩形性质得出∠A=∠D=90°,AB=CD,AD∥BC,推出∠AEB=∠EBC,∠DEC=∠ECB,求出∠AEB=∠ABE,∠DCE=∠DEC,推出AB=AE,DE=DC,推出AE=DE,根据SAS推出△ABE≌△DCE,推出BE=CE即可.【详解】∵四边形ABCD是矩形,∴∠A=∠D=90°,AB=CD,AD∥BC,∴∠AEB=∠EBC,∠DEC=∠ECB,∵BE、CE分别平分∠ABC和∠DCB,∴∠ABE=∠EBC,∠DCE=∠ECB,∴∠AEB=∠ABE,∠DCE=∠DEC,∴AB=AE,DE=DC,∴AE=DE,∴△ABE和△DCE都是等腰直角三角形,在△ABE和△DCE中,,∴△ABE≌△DCE(SAS),∴BE=CE,∴①②③都正确,故选D.【点睛】此题考查全等三角形的判定与性质,等腰直角三角形,等边三角形的判定,解题关键在于掌握各判定定理.3、B【解析】
由正方形的对角线平分对角得∠DBE=45°,再由BE=BD,等边对等角结合三角形内角和求出∠BDE,最后由∠BDE和∠BDA之差求得∠ADE.【详解】∵四边形ABCD为正方形,∴∠DBE=45°,又∵BD=BE,∴△BDE为等腰三角形,∴∠BDE=(180°-45°)÷2=67.5,∴∠ADE=∠BDE-∠BDA=90°-67.5°=22.5°,故答案为:B.【点睛】此题主要考查正方形的性质,解题的关键是熟知等腰三角形与正方形的性质.4、B【解析】根据中心对称图形的概念,中心对称图形是图形沿对称中心旋转180度后与原图重合.因此,只有选项B符合条件.故选B.5、C【解析】分析:根据二次根式的乘法法则结合平方差公式进行计算即可.详解:原式=.故选C.点睛:熟记“二次根式的乘法法则和平方差公式”是正确解答本题的关键.6、D【解析】
根据勾股定理逆定理可得此三角形是直角三角形,进而可得答案.【详解】解:∵72+242=252,∴此三角形是直角三角形,∴这个三角形的最大内角是90°,故选D.【点睛】此题主要考查了勾股定理逆定理,关键是掌握如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.7、D【解析】
一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0),首先把方程左边的两式相乘,再移项使方程右边变为0,然后合并同类项即可.【详解】由得故选:D【点睛】本题考查了一元二次方程的一般形式.去括号的过程中要注意符号的变化,不要漏乘,移项时要注意符号的变化.8、D【解析】
根据命题:“a>0”的反面是:“a≤0”,可得假设内容.【详解】解:由于命题:“a>0”的反面是:“a≤0”,故用反证法证明:“a>0”,应假设“a≤0”,故选:D.【点睛】此题主要考查了反证法的步骤,熟记反证法的步骤:(1)假设结论不成立;(2)从假设出发推出矛盾;(3)假设不成立,则结论成立.9、B【解析】
过F作FH⊥AD于H,交ED于O,于是得到FH=AB=1,根据勾股定理得到AF===,根据平行线分线段成比例定理得到,OH=AE=,由相似三角形的性质得到=,求得AM=AF=,根据相似三角形的性质得到=,求得AN=AF=,即可得到结论.【详解】过F作FH⊥AD于H,交ED于O,则FH=AB=1.∵BF=1FC,BC=AD=3,∴BF=AH=1,FC=HD=1,∴AF===,∵OH∥AE,∴=,∴OH=AE=,∴OF=FH﹣OH=1﹣=,∵AE∥FO,∴△AME∽△FMO,∴=,∴AM=AF=,∵AD∥BF,∴△AND∽△FNB,∴=,∴AN=AF=,∴MN=AN﹣AM=﹣=,故选B.【点睛】构造相似三角形是本题的关键,且求长度问题一般需用到勾股定理来解决,常作垂线10、D【解析】
根据折叠得到BF=B′F,根据相似三角形的性质得到或,设BF=x,则CF=10-x,即可求出x的长,得到BF的长,即可选出答案.【详解】解:∵△ABC沿EF折叠B和B′重合,
∴BF=B′F,
设BF=x,则CF=10-x,
∵当△B′FC∽△ABC,,∵AB=8,BC=10,
∴,解得:x=,
即:BF=,当△FB′C∽△ABC,,,解得:x=5,故BF=5或,故选:D.【点睛】本题主要考查了相似三角形的性质,以及图形的折叠问题,解此题的关键是设BF=x,根据相似三角形的性质列出比例式.11、A【解析】
先由点a在数轴上的位置确定a的取值范围及a-1的符号,再代入原式进行化简即可【详解】由数轴可知0<a<1,所以,=1,选A。【点睛】此题考查二次根式的性质与化简,实数与数轴,解题关键在于确定a的大小12、D【解析】
解:根据一次函数的图象可得:a<0,b>0,k<0,则①正确,②错误;根据一次函数和方程以及不等式的关系可得:③和④是正确的故选:D.【点睛】本题考查一次函数的图象及一次函数与不等式.二、填空题(每题4分,共24分)13、±1【解析】
根据完全平方式的一般式,计算一次项系数即可.【详解】解:∵b为常数,且x2﹣bx+1是完全平方式,∴b=±1,故答案为±1.【点睛】本题主要考查完全平方公式的系数关系,关键在于一次项系数的计算.14、【解析】
分式的最简公分母通常取各分母系数的最小公倍数与字母因式的最高次幂的积作公分母,即可得解.【详解】由题意,得其最简公分母是,故答案为:.【点睛】此题主要考查分式的最简公分母,熟练掌握,即可解题.15、或.【解析】
根据二次根式有意义的条件可求出x、y的值,代入即可得出结论.【详解】∵且,∴,∴,∴或.故答案为:或.【点睛】本题考查了二次根式有意义的条件.解答本题的关键由二次根式有意义的条件求出x、y的值.16、60【解析】
先根据等腰三角形的性质求出∠C的度数,再由线段垂直平分线的性质可知∠C=∠CAD,根据三角形内角与外角的关系即可求解.【详解】解:∵∠BAC=120°,AB=AC,∴∠C===30°,∵AC的垂直平分线交BC于D,∴AD=CD,∴∠C=∠CAD=30°,∵∠ADB是△ACD的外角,∴∠ADB=∠C+∠CAD=30°+30°=60°.故答案为60°.【点睛】本题主要考查线段垂直平分线的性质,等腰三角形的性质,熟记知识点是解题的关键.17、x≤﹣1.【解析】
根据解一元一次不等式基本步骤:移项、合并同类项、系数化为1可得.【详解】∵﹣2x≥3﹣1,∴﹣2x≥2,则x≤﹣1,故答案为:x≤﹣1.【点睛】此题考查解一元一次不等式,难度不大18、1【解析】
一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差,所以其中的是、、、的平均数,据此求解即可.【详解】解:,
是、、、的平均数,
故答案为:1.【点睛】此题主要考查了方差的含义和求法,要熟练掌握,解答此题的关键是要明确:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差.三、解答题(共78分)19、(1);(2)24天;(1)2.4万米1.【解析】
(1)根据题意列方程即可.(2)将已知数值代入函数关系式计算即可.(1)根据题意列出分式不等式,求解即可.【详解】解:(1)运输公司完成任务所需的时间y(单位:天)与平均每天的工作量x(单位:万米1)之间的函数关系式为:xy=160,故y=;(2)∵当运输公司平均每天的工作量15万米1,∴完成任务所需的时间是:y==24(天),答:完成任务所需的时间是24天;(1)为了能在150天内完成任务,设平均每天的工作量是m,格局题意可得:150≥,解得:x≥2.4,答:平均每天的工作量至少是2.4万米1.【点睛】本题主要考查反比例函数的应用,关键在于根据题意列出反比例函数的关系式.20、(1)③④;(2)详见解析【解析】
(1)根据“对角线垂直四边形"的定义求解;(2)根据三角形中位线的性质得到HG//EF,HE//GF,则可判断四边形EFGH是平行四边形,再证明∠EHG=90°,然后判断四边形EFGH是矩形;【详解】(1)菱形和正方形是“对角线垂直四边形,故③④满足题意.(2)证明:∵点分别是边、、、的中点,∴,且;,且;.∴.∴四边形是平行四边形.∵,∴,又∵,∴.∴.∴是矩形.【点睛】本题考查了中点四边形:任意四边形各边中点的连线所组成的四边形为平行四边形,也考查了三角形中位线性质、菱形、正方形的性质.21、解:设巴士的速度是x千米/小时,轿车的速度是3x千米/小时,x=16经检验x=16是方程的解.16×3=48巴士的速度是16千米/小时,轿车的速度是48千米/小时.【解析】设巴士的速度是x千米/小时,轿车的速度是3x千米/小时,根据A、B两地的距离是80千米,一辆巴士从A地驶出3小时后,一辆轿车也从A地出发,它的速度是巴士的3倍,已知轿车比巴士早20分钟到达B地,可列方程求解.22、(1)第35分钟时比开始学习后第5分钟学生的注意力更集中;(2)这样的课堂学习安排合理得.【解析】
(1)从图象上看,AB表示的函数为一次函数,BC是平行于x轴的线段,CD为双曲线的一部分,设出解析式,代入数值可以解答,把自变量的值代入相对应的函数解析式,求出对应的函数值比较得出;(2)求出相对应的自变量的值,代入相对应的函数解析式,求出注意力指标数与40相比较,得出答案【详解】(1)设AB段的函数关系式为,将代入得解得:∴.AB段的函数关系式为设CD段的函数关系式为,将代入得,∴反比例函数的解析式为:把代入得:把代入得:∴第35分钟时比开始学习后第5分钟学生的注意力更集中(2)把代入得:把代入得:根据题意得∴这样的课堂学习安排合理得。【点睛】此题考查反比例函数的应用,解题关键在于把自变量的值代入相对应的函数解析式23、(1);(2)见解析【解析】
(1)设一次函数解析式为,将A,B坐标代入求出k,b的值,即可得解析式;(2)建立坐标系,找到A,B两点的位置,再连线即可.【详解】(1)设一次函数解析式为,将A(-1,2)和点B(0,4)代入得:解得,∴一次函数解析式为(2)如图所示,【点睛】本题考查求一次函数解析式与作图,熟练掌握待定系数法求函数解析式是解题的关键.24、(1)y=x+2;(2)(,10);(3)存在,P坐标为(6,6)或(6,2+2)或(6,10-2).【解析】
(1)设直线DP解析式为y=kx+b,将D与C坐标代入求出k与b的值,即可确定出解析式;
(2)当点B的对应点B′恰好落在AC边上时,根据勾股定理列方程即可求出此时P坐标;
(3)存在,分别以BD,DP,BP为底边三种情况考虑,利用勾股定理及图形与坐标性质求出P坐标即可.【详解】解:(1)∵C(6,10),D(0,2),
设此时直线DP解析式为y=kx+b,
把D(0,2),C(6,10)分别代入,得
,
解得
则此时直线DP解析式为y=x+2;
(2)设P(m,10),则PB=PB′=m,如图2,
∵OB′=OB=10,OA=6,
∴AB′==8,
∴B′C=10-8=2,
∵PC=6-m,
∴m2=22+(6-m)2,解得m=
则此时点P的坐标是(,10);
(3)存在,理由为:
若△BDP为等腰三角形,分三种情况考虑:如图3,
①当BD=BP1=OB-OD=10-2=8,
在Rt△BCP1中,BP1=8,BC=6,
根据勾股定理得:CP1=,
∴AP1=10-2,即P1(6,10-2);
②当BP2=D
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 第三十一章 作用于呼吸系统的药物课件
- 活着的读后感200字
- 2024年度房地产交易物流服务合同2篇
- 2024-2025学年高中语文上学期 文言文阅读之概括和分析文本内容说课稿
- 慈明学校高一上学期第一次月考语文试卷(含答案)
- 《预算员培训》课件
- 《领导与领导者》课件
- 二零二四年度非开挖地下空间利用合同3篇
- 2024年度食品供应与采购合同
- 二零二四年钢材切割加工合同2篇
- 小学生飞机知识科普课件
- 利乐TBA9培训演示文稿课件
- 《雪花的快乐》 完整版课件
- 创建三甲医院实施方案(4篇)
- 康熙字典9画五行属金的字加解释
- 生态学(第四章群落演替)课件
- 预应力混凝土铁路桥简支梁产品生产许可证实施细则培训考题(含答案)
- 小学生自我介绍竖版
- GB∕T 13610-2020 天然气的组成分析 气相色谱法
- 凸透镜成像规律 动画演示
- 单轨吊设计施工技术方案及措施
评论
0/150
提交评论