版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
浙江省杭州市富阳区城区联考2024年八年级数学第二学期期末考试模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每小题3分,共30分)1.整数满足,则的值为A.4 B.5 C.6 D.72.若关于x的一元二次方程(k﹣1)x2+2x﹣2=0有两个不相等的实数根,则k的取值范围是()A.k> B.k≥ C.k>且k≠1 D.k≥且k≠13.下列各式从左到右是分解因式的是()A.a(x+y)=ax+ayB.10x2﹣5x=5x(2x﹣1)C.8m3n=2m3•4nD.t2﹣16+3t=(t+4)(t﹣4)+3t4.将下列多项式分解因式,结果中不含因式x+1的是()A.x2−1B.x2−2x+1C.x(x−2)+(x−2)D.x2+2x+15.下面是甲、乙两人10次射击成绩(环数)的条形统计图,则下列说法正确的是()A.甲比乙的成绩稳定B.乙比甲的成绩稳定C.甲、乙两人的成绩一样稳定D.无法确定谁的成绩更稳定6.已知一次函数y=kx+b随着x的增大而减小,且kb<0,则在直角坐标系内它的大致图象是(
)A. B. C. D.7.点M(1,2)关于y轴对称点的坐标为()A.(﹣1,2) B.(﹣1,﹣2) C.(1,﹣2) D.(2,﹣1)8.如图,在中,,,,,则的长为()
A.6 B.8 C.9 D.109.一组数据为:3130352930,则这组数据的方差是()A.22 B.18 C.3.6 D.4.410.下列式子中,属于最简二次根式的是A. B. C. D.二、填空题(每小题3分,共24分)11.中国象棋在中国有着三千多年的历史,它难易适中,趣味性强,变化丰富细腻,棋盘棋子文字都体现了中国文化.如图,如果所在位置的坐标为(﹣1,﹣1),所在位置的坐标为(2,﹣1),那么,所在位置的坐标为__________.12.若α是锐角且sinα=,则α的度数是.13.若,则=______14.如图,四边形ABCD中,E、F、G、H分别为各边的中点,顺次连结E、F、G、H,把四边形EFGH称为中点四边形.连结AC、BD,容易证明:中点四边形EFGH一定是平行四边形.(1)如果改变原四边形ABCD的形状,那么中点四边形的形状也随之改变,通过探索可以发现:当四边形ABCD的对角线满足AC=BD时,四边形EFGH为菱形;当四边形ABCD的对角线满足时,四边形EFGH为矩形;当四边形ABCD的对角线满足时,四边形EFGH为正方形.(2)试证明:S△AEH+S△CFG=S□ABCD(3)利用(2)的结论计算:如果四边形ABCD的面积为2012,那么中点四边形EFGH的面积是(直接将结果填在横线上)15.如果将一次函数的图像沿轴向上平移3个单位,那么平移后所得图像的函数解析式为__________.16.如图是甲、乙两名射由运动员的10次射击训练成绩的折线统计图观察图形,比较甲、乙这10次射击成绩的方差、的大小:_____(填“>”、“<”或“=”)17.如图,已知矩形ABCD中,AB=6,AD=10,动点P从点D出发,在边DA上以每秒1个单位的速度向点A运动,连接CP,作点D关于直线PC的对称点E,设点P的运动时间为t(x),当P,E,B三点在同一直线上时对应t的值为.18.中国人民银行近期下发通知,决定自2019年4月30日停止兑换第四套人民币中菊花1角硬币.如图所示,则该硬币边缘镌刻的正多边形的外角的度数为_______.三、解答题(共66分)19.(10分)若x、y都是实数,且y=++,求x2y+xy2的值.20.(6分)如图所示,在正方形中,是上一点,是延长线上一点,且,连接,.(1)求证:;(2)若点在上,且,连接,求证:.21.(6分)如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(﹣4,3)、B(﹣3,1)、C(﹣1,3).(1)请按下列要求画图:①将△ABC先向右平移4个单位长度、再向上平移1个单位长度,得到△A1B1C1,画出△A1B1C1;②△A1B1C1与△ABC关于原点O成中心对称,画出△A1B1C1.(1)在(1)中所得的△A1B1C1和△A1B1C1关于点M成中心对称,请直接写出对称中心M点的坐标.22.(8分)如图,在平面直角坐标系中,一次函数y=kx+b的图象经过点A(﹣2,6),且与x轴相交于点B,与正比例函数y=3x的图象相交于点C,点C的横坐标为1.(1)求k、b的值;(2)若点D在y轴负半轴上,且满足S△COD=S△BOC,求点D的坐标.23.(8分)如图,在平面直角坐标系中,直线:
分别与x轴、y轴交于点B、C,且与直线:交于点A.分别求出点A、B、C的坐标;直接写出关于x的不等式的解集;若D是线段OA上的点,且的面积为12,求直线CD的函数表达式.24.(8分)如图,已知E,F分别是▱ABCD的边BC、AD上的点,且BE=DF求证:四边形AECF是平行四边形.25.(10分)已知,正比例函数的图象与一次函数的图象交于点.(1)求,的值;(2)求一次函数的图象与,围成的三角形的面积.26.(10分)如图,正方形ABCD中,AB=4,点E为边AD上一动点,连接CE,以CE为边,作正方形CEFG(点D、F在CE所在直线的同侧),H为CD中点,连接FH.(1)如图1,连接BE,BH,若四边形BEFH为平行四边形,求四边形BEFH的周长;(2)如图2,连接EH,若AE=1,求△EHF的面积;(3)直接写出点E在运动过程中,HF的最小值.
参考答案一、选择题(每小题3分,共30分)1、A【解析】
根据16<24<25,得出的取值范围,即可确定n的值.【详解】解:∵,且16<24<25,∴4<<5,∴n=4,故选:A.【点睛】本题考查了估算无理数的大小,运用“夹逼法”是解决本题的关键.2、C【解析】
根据题意得k-1≠0且△=2²-4(k-1)×(-2)>0,解得:k>且k≠1.故选C【点睛】本题考查了一元二次方程ax²+bx+c=0(a≠0)的根的判别式△=b²-4ac,关键是熟练掌握:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.3、B【解析】
根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.【详解】解:A、是整式的乘法,故A错误;B、把一个多项式转化成几个整式积的形式,故B符合题意;C、是乘法交换律,故C不符合题意;D、没把一个多项式转化成几个整式积的形式,故D不符合题意;故选B.【点睛】本题考查了因式分解的意义,利用因式分解的意义是解题关键.4、B【解析】
直接利用平方差公式以及完全平方公式分解因式,进而得出答案.【详解】A、x2-1=(x+1)(x-1),故此选项不合题意;B、x2-2x+1=(x-1)2,故此选项符合题意;C、x(x-2)+(x-2)=(x+1)(x-2),故此选项不合题意;D、x2+2x+1=(x+1)2,故此选项不合题意;故选B.【点睛】此题主要考查了公式法以及提公因式法分解因式,熟练应用乘法公式是解题关键.5、B【解析】
通过观察条形统计图可知:乙的成绩更整齐,也相对更稳定,故选B.6、A【解析】
先根据函数图像得出其经过的象限,由一次函数图像与系数的关系即可得出结论.【详解】因为y随着x的增大而减小,可得:k<0,因为kb<0,可得:b>0,所以图像经过一、二、四象限.故选A.【点睛】本题考查的是一次函数的图像与系数的关系,即一次函数y=kx+b(k0)中,当k<0,b>0时函数的图像经过一、二、四象限.7、A【解析】
关于y轴对称的点的坐标特征是纵坐标不变,横坐标变为相反数.【详解】点M(1,2)关于y轴对称点的坐标为(-1,2)【点睛】本题考查关于坐标轴对称的点的坐标特征,牢记关于坐标轴对称的点的性质是解题的关键.8、D【解析】
由DE∥BC可得出∠ADE=∠B,结合∠ADE=∠EFC可得出∠B=∠EFC,进而可得出BD∥EF,结合DE∥BC可证出四边形BDEF为平行四边形,根据平行四边形的性质可得出DE=BF,由DE∥BC可得出△ADE∽△ABC,根据相似三角形的性质可得出BC=DE,再根据CF=BC﹣BF=DE=6,即可求出DE的长度.【详解】解:∵DE∥BC,∴∠ADE=∠B.∵∠ADE=∠EFC,∴∠B=∠EFC,∴BD∥EF,∵DE∥BF,∴四边形BDEF为平行四边形,∴DE=BF.∵DE∥BC,∴△ADE∽△ABC,∴,∴BC=DE,∴CF=BC﹣BF=DE=6,∴DE=1.故选:D.【点睛】本题考查了相似三角形的判定与性质、平行线的性质以及平行四边形的判定与性质,根据相似三角形的性质找出BC=DE是解题的关键.9、D【解析】
根据方差的定义先计算出这组数的平均数然后再求解即可.【详解】解:这组数据的平均数为=31,所以这组数据的方差为×[(31﹣31)2+(30﹣31)2+(35﹣31)2+(29﹣31)2+(30﹣31)2]=4.4,故选D.【点睛】方差和平均数的定义及计算公式是本题的考点,正确计算出这组数的平均数是解题的关键.10、B【解析】
判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件(1)被开方数的因数是整数,因式是整式;(2)被开方数中不含能开得尽方的因数或因式是否同时满足,同时满足的就是最简二次根式,否则就不是.∵,∴属于最简二次根式.故选B.二、填空题(每小题3分,共24分)11、(﹣3,2)【解析】由“士”的位置向右平移减1个单位,在向上平移1个单位,得所在位置的坐标为(-3,2),
故答案是:(-3,2).12、60°【解析】试题分析:由α是锐角且sinα=,可得∠α=60°.考点:特殊角的三角函数值13、【解析】
设=k,同x=2k,y=4k,z=5k,再代入中化简即可.【详解】设=k,x=2k,y=4k,z=5k=.故答案是:.【点睛】考查的是分式化简问题,利用比例性质通过设未知数的方式,代入分式化简可以求解.14、;(2)详见解析;(3)1【解析】
(1)若四边形EFGH为矩形,则应有EF∥HG∥AC,EH∥FG∥BD,EF⊥EH,故应有AC⊥BD;若四边形EFGH为正方形,同上应有AC⊥BD,又应有EH=EF,而EF=AC,EH=BD,故应有AC=BD.
(2)由相似三角形的面积比等于相似比的平方求解.
(3)由(2)可得S▱EFGH=S四边形ABCD=1【详解】(1)解:若四边形EFGH为矩形,则应有EF∥HG∥AC,EH∥FG∥BD,EF⊥EH,故应有AC⊥BD;
若四边形EFGH为正方形,同上应有AC⊥BD,又应有EH=EF,而EF=AC,EH=BD,故应有AC=BD;
(2)S△AEH+S△CFG=S四边形ABCD
证明:在△ABD中,
∵EH=BD,
∴△AEH∽△ABD.
∴=()2=
即S△AEH=S△ABD
同理可证:S△CFG=S△CBD
∴S△AEH+S△CFG=(S△ABD+S△CBD)=S四边形ABCD;(3)解:由(2)可知S△AEH+S△CFG=(S△ABD+S△CBD)=S四边形ABCD,
同理可得S△BEF+S△DHG=(S△ABC+S△CDA)=S四边形ABCD,
故S▱EFGH=S四边形ABCD=1.【点睛】本题考查了三角形的中位线的性质及特殊四边形的判定和性质,相似三角形的性质.15、【解析】
根据一次函数图象的平移规律:上加下减,左加右减进行平移即可得出答案.【详解】将一次函数的图像沿轴向上平移3个单位,那么平移后所得图像的函数解析式为,即,故答案为:.【点睛】本题主要考查一次函数图象的平移,掌握一次函数图象的平移规律是解题的关键.16、<【解析】
利用折线统计图可判断乙运动员的成绩波动较大,然后根据方差的意义可得到甲乙的方差的大小.【详解】解:由折线统计图得乙运动员的成绩波动较大,
所以.
故答案为:<【点睛】本题考查了条形统计图:条形统计图是用线段长度表示数据,根据数量的多少画成长短不同的矩形直条,然后按顺序把这些直条排列起来.也考查了方差的意义.17、2【解析】
根据题意PD=t,则PA=10-t,首先证明BP=BC=10,在Rt△ABP中利用勾股定理即可解决问题,【详解】解:如图,根据题意PD=t,则PA=10−t,∵B、E、P共线,∴∠BPC=∠DPC,∵AD∥BC,∴∠DPC=∠PCB,∴∠BPC=∠PCB,∴BP=BC=10,在Rt△ABP中,∵,∴,∴t=2或18(舍去),∴PD=2,∴t=2时,B、E、P共线;故答案为:2.【点睛】本题主要考查了矩形的性质,轴对称的性质,掌握矩形的性质,轴对称的性质是解题的关键.18、45°【解析】
根据正多边形的外角度数等于外角和除以边数可得.【详解】∵硬币边缘镌刻的正多边形是正八边形,∴它的外角的度数等于360÷8=45°.故答案为45°.【点睛】本题主要考查了多边形的外角和定理,任何一个多边形的外角和都是360°.三、解答题(共66分)19、1+1.【解析】
根据二次根式有意义的条件可得x=2,进而可得y的值,然后代入求值即可.【详解】由题意得:,解得:x=2,则y=,x2y+xy2=xy(x+y)=2(2+)=1+1.【点睛】此题主要考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数.20、(1)详见解析;(2)详见解析.【解析】
(1)由正方形的性质得到,,求得,根据全等三角形的判定和性质定理即可得到结论;(2)根据全等三角形的性质得到,根据线段的和差即可得到结论.【详解】证明(1)在正方形中,∵,又∵∴∴(2)∵∴又∵∴在和△中∵又由(1)知∴∴又∵∴【点睛】本题考查了正方形的性质,全等三角形的判定和性质,熟练掌握全等三角形的判定和性质定理是解题的关键.21、解:(1)①△A1B1C1如图所示;②△A1B1C1如图所示.(1)连接B1B1,C1C1,得到对称中心M的坐标为(1,1).【解析】试题分析:(1)①根据网格结构找出点A、B、C平移后的对应点A1、B1、C1的位置,然后顺次连接即可.②根据网格结构找出A、B、C关于原点O的中心对称点A1、B1、C1的位置,然后顺次连接即可.(1)连接B1B1,C1C1,交点就是对称中心M.22、(1)k=-1,b=4;(2)点D的坐标为(0,-4).【解析】
分析:(1)利用一次函数图象上点的坐标特征可求出点C的坐标,根据点A、C的坐标,利用待定系数法即可求出k、b的值;(2)利用一次函数图象上点的坐标特征可求出点B的坐标,设点D的坐标为(0,m)(m<0),根据三角形的面积公式结合S△COD=S△BOC,即可得出关于m的一元一次方程,解之即可得出m的值,进而可得出点D的坐标.详解:(1)当x=1时,y=3x=3,∴点C的坐标为(1,3).将A(﹣2,6)、C(1,3)代入y=kx+b,得:,解得:.(2)当y=0时,有﹣x+4=0,解得:x=4,∴点B的坐标为(4,0).设点D的坐标为(0,m)(m<0),∵S△COD=S△BOC,即﹣m=××4×3,解得:m=-4,∴点D的坐标为(0,-4).点睛:本题考查了两条直线相交或平行问题、一次函数图象上点的坐标特征、待定系数法求一次函数解析式以及三角形的面积,解题的关键是:(1)根据点的坐标,利用待定系数法求出k、b的值;(2)利用三角形的面积公式结合结合S△COD=S△BOC,找出关于m的一元一次方程.23、A,,;;.【解析】
(1)根据依次函数关系式,分别令x=0,y=0,即可求出一次函数与坐标轴的交点,即B、C的坐标,然后再联立两个一次函数关系式为二元一次方程组,即可求解点A的坐标,(2)直接解不等式即可求解,(3)设,根据的面积为12,可得:,解得:,即,再设直线CD的函数表达式是,把,代入得:,解得:,因此直线CD的函数表达式为:.【详解】直线:,当时,,当时,,则,,解方程组:得:,则,故A,,,关于x的不等式的解集为:,设,的面积为12,,解得:,,设直线CD的函数表达式是,把,代入得:,解得:,直线CD的函数表达式为:.【点睛】本题主要考查一次函数图像性质和待定系数法求一次函数关系式,解决本题的关键是要熟练掌握一次函数图象性质和待定系数法求一次函数解析式.24、证明见解析.【解析】
首先由已知证明AF∥EC,BE=DF,推出四边形AECF是平行四边形.【详解】解:∵□ABCD,∴AD=BC,AD∥BC,又∵BE=DF,∴AF=CE,∴四边形AECF为平行四边形.【点睛】此题考查的知识点是平行四边形的判定和性质,解题的关键是运用平行四边形的性质推出结论.25、(1),;(2)40.5【解析】
(1)把交点的坐标代入两个函数解析式计算即可得解;(2)设直线与交于点,则,一次函数与,分别交于点、,求出、两点的坐标,再根据三角形的面积公式列式计算即可.【详解】解:(1)正比例函数的图象与一次函数的图象交于点,,,解得,;(2)如图,设直线与交于点,则.一次函数的解析式为.设直线与,分别交于点、,当时,,.当时,,解得,..【点睛】本题考查了两条直线的交点问题:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解.也考查了一次函数图象上点的坐标特征.26、(1)8;(2);(3)3.【解析】
(1)由平行四边形的性质和正方形的性质可得EC=EF=BH,BC=DC,可证Rt△BHC≌Rt△CED,可得CH=DE,由“SAS”可证BE=EC,可得BE=EF=HF=BH=EC,由勾股定理可求BH的长,即可求四边形BEFH的周长;
(2)连接DF,过点F作FM⊥AD,交AD延长线于点M,由“AAS”可证△EFM≌△CED,可得CD=EM=4,DE=FM=3,由三角
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《猪姜片吸虫病》课件
- 地理(内蒙古)-【八省联考】河南、山西、陕西、内蒙古、四川、云南、宁夏、青海八省2025年高考综合改革适应性演练联考试题和答案
- 《知识大考验》课件
- 小学一年级10以内连加连减口算练习题
- 出凝血疾病的实验诊断学思路-2019年华医网继续教育答案
- 作业姿势的分类分析及抗疲劳方案
- 2019工程伦理慕课答案(2019秋)习题及期末答案
- 2022年合肥幼儿师范高等专科学校单招面试题库及答案解析
- 小学数学二年级数学加减法练习题
- 物流运输客服工作经验
- 江苏省苏州市(2024年-2025年小学五年级语文)统编版期末考试((上下)学期)试卷及答案
- 供应链年终总结报告
- 体育训练服务行业市场调研分析报告
- 肝性脑病的护理课件-
- 2024年丢失物品索偿协议书模板
- 2025年八省联考新高考 语文试卷
- 建筑物拆除场地清理垃圾外运施工方案
- 内部调查与举报制度
- ISO27001信息安全管理体系培训资料
- 《卖火柴的小女孩》公开课一等奖创新教学设计(共两课时)
- 山东省东营市(2024年-2025年小学四年级语文)统编版期末考试(上学期)试卷及答案
评论
0/150
提交评论