版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024年重庆市荣昌清流镇民族中学八年级数学第二学期期末监测模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.如图,△ABC中AB=AC,点D在AC边上,且BD=BC=AD,则∠A度数为()A.30° B.36° C.45° D.70°2.已知点在直线上,则关于的不等式的解集是()A. B. C. D.3.在方差公式中,下列说法不正确的是()A.n是样本的容量 B.是样本个体 C.是样本平均数 D.S是样本方差4.某经销商销售一批多功能手表,第一个月以200元/块的价格售出80块,第二个月起降价,以150元/块的价格将这批手表全部售出,销售总额超过了2.7万元,则这批手表至少有()A.152块 B.153块 C.154块 D.155块5.梅凯种子公司以一定价格销售“黄金1号”玉米种子,如果一次购买10千克以上(不含l0千克)的种子,超过l0千克的那部分种子的价格将打折,并依此得到付款金额y(单位:元)与一次购买种子数量x(单位:千克)之间的函数关系如图所示.下列四种说法:①一次购买种子数量不超过l0千克时,销售价格为5元/千克;②一次购买30千克种子时,付款金额为100元;③一次购买10千克以上种子时,超过l0千克的那部分种子的价格打五折:④一次购买40千克种子比分两次购买且每次购买20千克种子少花25元钱.其中正确的个数是A.1个 B.2个 C.3个 D.4个6.菱形具有而平行四边形不具有的性质是()A.对角线互相垂直 B.对边平行C.对边相等 D.对角线互相平分7.方程的解是()A. B. C. D.8.具备下列条件的三角形中,不是直角三角形的是()A.∠A+∠B=∠C B.∠B=∠C=∠AC.∠A=90°-∠B D.∠A-∠B=90°9.下列方程中有实数根的是()A.; B.=; C.; D.=1+.10.已知一次函数y=kx+b(k≠0)图象经过第二、三、四象限,则一次函数y=﹣bx+kb图象可能是()A. B. C. D.11.如图,在正方形中,,是对角线上的动点,以为边作正方形,是的中点,连接,则的最小值为()A. B. C.2 D.12.下列计算正确的是()A.3﹣2=1 B.(1﹣)(1+)=﹣1C.(2﹣)(3+)=4 D.(+)2=5二、填空题(每题4分,共24分)13.已知关于x的分式方程有一个正数解,则k的取值范围为________.14.如图,四边形ABCD是菱形,AC=24,BD=10,DH⊥AB于点H,则线段BH的长为______.15.的平方根为_______16.如图,已知中,,,,是的垂直平分线,交于点,连接,则___17.若将直线y=﹣2x向上平移3个单位后得到直线AB,那么直线AB的解析式是_____.18.如图,在矩形中,,,是边的中点,点是边上的一动点,将沿折叠,使得点落在处,连接,,当点落在矩形的对称轴上,则的值为______.三、解答题(共78分)19.(8分)如图,在边长为6的正方形ABCD中,E是边CD的中点,将△ADE沿AE对折至△AFE,延长交BC于点G,连接AG.(1)求证:△ABG≌△AFG;(2)求BG的长.20.(8分)小聪和小明沿同一条路同时从学校出发到某超市购物,学校与超市的路程是4千米.小聪骑自行车,小明步行,当小聪从原路回到学校时,小明刚好到达超市.图中折线O﹣A﹣B﹣C和线段OD分别表示两人离学校的路程s(千米)与所经过的时间t(分钟)之间的函数关系,请根据图象回答下列问题:(1)小聪在超市购物的时间为分钟,小聪返回学校的速度为千米/分钟;(2)请你求出小明离开学校的路程s(千米)与所经过的时间t(分钟)之间的函数关系式;(3)当小聪与小明迎面相遇时,他们离学校的路程是多少千米?21.(8分)已知矩形周长为18,其中一条边长为x,设另一边长为y.(1)写出y与x的函数关系式;(2)求自变量x的取值范围.22.(10分)列分式方程解应用题“六一”前夕,某商场用7200元购进某款电动玩具销售.由于销售良好,过了一段时间,商场又用14800元购进这款玩具,所购数量是第一次购进数量的2倍,但每件价格比第一次购进贵了2元.(1)求该商场第一次购进这款玩具多少件?(2)设该商场两次购进的玩具按相同的标价销售,最后剩下的80件玩具按标价的六折再销售,若两次购进的玩具全部售完,且使利润不低于4800元,则每件玩具的标价至少是多少元?23.(10分)如图,平面直角坐标系中,直线AB:交y轴于点,交x轴于点B.
(1)求直线AB的表达式和点B的坐标;
(2)直线l垂直平分OB交AB于点D,交x轴于点E,点P是直线l上一动点,且在点D的上方,设点P的纵坐标为n.①当
时,求点P的坐标;②在①的条件下,以PB为斜边在第一象限作等腰直角,求点C的坐标.24.(10分)已知直线与轴,轴分别交于点,将对折,使点的对称点落在直线上,折痕交轴于点.(1)求点的坐标;(2)若已知第四象限内的点,在直线上是否存在点,使得四边形为平行四边形?若存在,求出点的坐标;若不存在,说明理由;(3)设经过点且与轴垂直的直线与直线的交点为为线段上一点,求的取值范围.25.(12分)甲、乙两名同学进入八年级后,某科6次考试成绩如图所示:(1)请根据统计图填写下表:平均数方差中位数众数甲7575乙33.372.5(2)请你分别从以下两个不同的方面对甲、乙两名同学6次考试成绩进行分析,你认为反映出什么问题?①从平均数和方差相结合分析;②从折线图上两名同学分数的走势上分析.26.已知一次函数与反比例函数的图象交于点P(3,m),Q(1,3).(1)求反函数的函数关系式;(2)在给定的直角坐标系(如图)中,画出这两个函数的大致图象;(3)当x为何值时,一次函数的值大于反比例函数的值?
参考答案一、选择题(每题4分,共48分)1、B【解析】
∵BD=BC=AD,AC=AB,∴∠A=∠ABD,∠C=∠ABC=∠CDB,设∠A=x°,则∠ABD=∠A=x°,∴∠C=∠ABC=∠CDB=∠A+∠ABD=2x°,∵∠A+∠C+∠ABC=180°,∴x+2x+2x=180,∴x=36,∴∠A=36°.故选B.考点:1.等腰三角形的性质;2.三角形内角和定理.2、C【解析】
一次函数与x轴的交点横坐标为−1,且函数值y随自变量x的增大而增大,根据一次函数的性质可判断出解集.【详解】解:点A(−1,0)在直线y=kx+b(k>0)上,∴当x=−1时,y=0,且函数值y随x的增大而增大;∴关于x的不等式kx+b>0的解集是x>−1.故选:C.【点睛】本题考查了一次函数与一元一次不等式.由于任何一元一次不等式都可以转化的ax+b>0或ax+b<0(a、b为常数,a≠0)的形式,所以解一元一次不等式可以看作:当一次函数值大于(或小于)0时,求自变量相应的取值范围.3、D【解析】
根据方差公式中各个量的含义直接得到答案.【详解】A,B,C都正确;是样本方差,故D选项错误.故选D.4、C【解析】
根据题意设出未知数,列出相应的不等式,从而可以解答本题.【详解】解:设这批手表有x块,
解得,
这批手表至少有154块,
故选C.【点睛】本题考查一元一次不等式的应用,解题的关键是明确题意,列出相应的不等式.5、D【解析】①由图可知,购买10千克种子需要50元,由此求出一次购买种子数量不超过10千克时的销售价格;②由图可知,超过10千克以后,超过的那部分种子的单价降低,而由购买50千克比购买10千克种子多付100元,求出超过10千克以后,超过的那部分种子的单价,再计算出一次购买30千克种子时的付款金额;③根据一次购买10千克以上种子时,超过10千克的那部分种子的价格为2.5元/千克,而2.5÷5=0.5,所以可以求出打的折数;④先求出一次购买40千克种子的付款金额为125元,再求出分两次购买且每次购买20千克种子的付款金额为150元,然后用150减去125,即可求出一次购买40千克种子比分两次购买且每次购买20千克种子少花的钱数.解:①由图可知,一次购买种子数量不超过10千克时,销售价格为:50÷10=5元/千克,正确;②由图可知,超过10千克的那部分种子的价格为:(150-50)÷(50-10)=2.5元/千克,所以,一次购买30千克种子时,付款金额为:50+2.5×(30-10)=100元,正确;③由于一次购买10千克以上种子时,超过10千克的那部分种子的价格为2.5元/千克,而2.5÷5=0.5,所以打五折,正确;④由于一次购买40千克种子需要:50+2.5×(40-10)=125元,分两次购买且每次购买20千克种子需要:2×[50+2.5×(20-10)]=150元,而150-125=25元,所以一次购买40千克种子比分两次购买且每次购买20千克种子少花25元钱,正确.故选D.6、A【解析】
根据菱形及平行四边形的性质,结合选项即可得出答案.【详解】A、对角线互相垂直是菱形具有,平行四边形不具有的性质,故本选项正确;B、对边平行是菱形和平行四边形都具有的性质,故本选项错误;C、对边相等是菱形和平行四边形都具有的性质,故本选项错误;D、对角线互相平分是菱形和平行四边形都具有的性质,故本选项错误.故选A.【点睛】此题考查了平行四边形及菱形的性质,属于基础题,关键是熟练掌握特殊图形的基本性质.7、C【解析】
根据方程即可得出两个一元一次方程,求出方程的解即可.【详解】解:由,得x=0,x+2=0∴故选C.【点睛】本题考查了解一元二次方程.能把一元二次方程转化为一元一次方程是解此题的关键.8、D【解析】
根据三角形内角和定理对各选项进行逐一判断即可.【详解】A.
∵∠A+∠B=∠C,∠A+∠B+∠C=180°∴2∠C=180°,解得∠C=90°,∴此三角形是直角三角形,故本选项错误;B.
∵∠B=∠C=∠A,∴设∠B=∠C=x,则∠A=2x.∵∠A+∠B+∠C=180°,∴x+x+2x=180°,解得x=45°,∴∠A=2x=90°,∴此三角形是直角三角形,故本选项错误;C.
∵∠A=90°−∠B,∴∠A+∠B=90°,∴此三角形是直角三角形,故本选项错误;D.∵∠A-∠B=90°,∴∠A=∠B+90°,∴此三角形不是直角三角形,故本选项正确.故答案选D.【点睛】本题考查了三角形内角和定理,解题的关键是熟练的掌握三角形内角和定理.9、B【解析】【分析】根据算术平方根意义或非负数性质以及分式方程的意义,可以判断方程的根的情况.【详解】A.,算术平方根不能是负数,故无实数根;B.=,两边平方可化为二元一次方程,有实数根,故可以选;C.方程化为,平方和不能是负数,故不能选;D.由=1+得x=1,使分母为0,故方程无实数根.故选:B【点睛】本题考核知识点:方程的根.解题关键点:根据方程的特殊形式判断方程的根的情况.10、A【解析】
首先根据一次函数的性质确定k,b的符号,再确定一次函数y=﹣bx+kb系数的符号,判断出函数图象所经过的象限.【详解】∵一次函数y=kx+b经过第二,三,四象限,∴k<0,b<0,∴−b>0,kb>0,所以一次函数y=−bx+kb的图象经过一、二、三象限,故选:A.【点睛】本题考查一次函数图象与系数的关系,解决此类题目的关键是确定k、b的正负.11、A【解析】
取AD中点O,连接OE,得到△ODE≌△HDG,得到OE=HG,当OE⊥AC时,OE有最小值,此时△AOE是等腰直角三角形,OE=AE,再根据正方形及勾股定理求出OE,即可得到GH的长.【详解】取AD中点O,连接OE,得到△ODE≌△HDG,得到OE=HG,当OE⊥AC时,OE有最小值,此时△AOE是等腰直角三角形,OE=AE,∵AD=AB=4,∴AO=AB=2在Rt△AOE中,由勾股定理可得OE2+AE2=AO2=4,即2OE2=4解得OE=∴GH的最小值为故选A.【点睛】本题考查了正方形的性质,根据题意确定E点的位置是解题关键.12、B【解析】
根据二次根式的混合运算顺序和运算法则逐一计算可得.【详解】A、此选项错误;B、此选项正确;C、此选项错误;D、,此选项错误;故选:B.【点睛】本题主要考查二次根式的混合运算,解题的关键是熟练掌握二次根式的混合运算顺序和运算法则.二、填空题(每题4分,共24分)13、k<6且k≠1【解析】分析:根据解分式方程的步骤,可得分式方程的解,根据分式方程的解是正数,可得不等式,解不等式,可得答案,并注意分母不分零.详解:,方程两边都乘以(x-1),得x=2(x-1)+k,解得x=6-k≠1,关于x的方程程有一个正数解,∴x=6-k>0,k<6,且k≠1,∴k的取值范围是k<6且k≠1.故答案为k<6且k≠1.点睛:本题主要考查了解分式方程、分式方程的解、一元一次不等式等知识,能根据已知和方程的解得出k的范围是解此题的关键.14、【解析】解:∵四边形ABCD是菱形,AC=24,BD=10,∴AO=12,OD=5,AC⊥BD,∴AD=AB==13,∵DH⊥AB,∴AO×BD=DH×AB,∴12×10=13×DH,∴DH=,∴BH==.故答案为:.15、【解析】
利用平方根立方根定义计算即可.【详解】∵,∴的平方根是±,故答案为±.【点睛】本题考查了方根的定义,熟练掌握平方根的定义是解本题的关键.注意:区别平方根和算术平方根.一个非负数的平方根有两个,互为相反数,正值为算术平方根.16、5【解析】
由是的垂直平分线可得AD=CD,可得∠CAD=∠ACD,利用勾股定理逆定理可得∠ACB=90°由等角的余角相等可得:∠DCB=∠B,可得CD=BD,可知CD=BD=AD=【详解】解:∵是的垂直平分线∴AD=CD∴∠CAD=∠ACD∵,,又∵∴∴∠ACB=90°∵∠ACD+∠DCB=90°,∠CAB+∠B=90°∴∠DCB=∠B∴CD=BD∴CD=BD=AD=故答案为5【点睛】本题考查了线段垂直平分线、勾股定理逆定理以及等腰三角形的性质,掌握勾股定理逆定理及利用等腰三角形求线段是解题的关键.17、y=﹣2x+1.【解析】
利用直线的平移规律:(1)k不变;(2)“上加下减,左加右减”的原则进行解答即可.【详解】∵将直线y=﹣2x向上平移1个单位,∴y=﹣2x+1,即直线的AB的解析式是y=﹣2x+1.故答案为:y=﹣2x+1.【点睛】本题考查了一次函数图象平移的特点.熟练应用一次函数平移规律是解题的关键.18、2【解析】
根据旋转的性质在三角形EHG中,利用30°角的特殊性得到∠EGH=30°,再利用对称性进行解题即可.【详解】解:如下图过点E作EH垂直对称轴与H,连接BG,∵,,∴BE=EG=1,EH=,∴∠EGH=30°,∴∠BEG=30°,由旋转可知∠BEF=15°,BG⊥EF,∴∠EBG=75°,∠GBF=∠BCG=15°,即∴m=2故答案是:2【点睛】本题考查了图形旋转的性质,中垂线的性质,直角三角形中30°的特殊性,熟悉30°角的特殊性是解题关键.三、解答题(共78分)19、(1)证明见解析(2)2【解析】试题分析:根据正方形的性质得到AD=AB,∠B=∠D=90°,根据折叠的性质可得AD=AF,∠AFE=∠D=90°,从而得到∠AFG=∠B=90°,AB=AF,结合AG=AG得到三角形全等;根据全等得到BG=FG,设BG=FG=x,则CG=6-x,根据E为中点得到CE=EF=DE=3,则EG=3+x,根据Rt△ECG的勾股定理得出x的值.试题解析:(1)、∵四边形ABCD是正方形,∴∠B=∠D=90°,AD=AB,由折叠的性质可知AD=AF,∠AFE=∠D=90°,∴∠AFG=90°,AB=AF,∴∠AFG=∠B,又AG=AG,∴△ABG≌△AFG;(2)、∵△ABG≌△AFG,∴BG=FG,设BG=FG=,则GC=,∵E为CD的中点,∴CE=EF=DE=3,∴EG=,∴,解得,∴BG=2.考点:正方形的性质、三角形全等、勾股定理.20、(1)15,;(2)s=t;(2)2千米【解析】
(1)根据购物时间=离开时间﹣到达时间即可求出小聪在超市购物的时间;再根据速度=路程÷时间即可算出小聪返回学校的速度;(2)根据点的坐标利用待定系数法即可求出小明离开学校的路程s与所经过的时间t之间的函数关系式;(2)根据点的坐标利用待定系数法即可求出当20≤s≤45时小聪离开学校的路程s(千米)与所经过的时间t(分钟)之间的函数关系式,令两函数关系式相等即可得出关于t的一元一次方程,解之即可求出t值,再将其代入任意一函数解析式求出s值即可.【详解】解:(1)20﹣15=15(分钟);4÷(45﹣20)=(千米/分钟).故答案为:15;.(2)设小明离开学校的路程s(千米)与所经过的时间t(分钟)之间的函数关系式为s=mt+n,将(0,0)、(45,4)代入s=mt+n中,,解得:,∴s=t.∴小明离开学校的路程s与所经过的时间t之间的函数关系式为s=t.(2)当20≤s≤45时,设小聪离开学校的路程s(千米)与所经过的时间t(分钟)之间的函数关系式为s=kt+b,将(20,4)、(45,0)代入s=kt+b,,解得:,∴s=﹣t+1.令s=t=﹣t+1,解得:t=,∴s=t=×=2.答:当小聪与小明迎面相遇时,他们离学校的路程是2千米.【点睛】本题考查了一次函数的应用以及待定系数法求一次函数解析式,解题的关键是:(1)根据数量关系列式计算;(2)根据点的坐标利用待定系数法求出函数关系式;(2)根据点的坐标利用待定系数法求出函数关系式.21、(1)y=1﹣x;(2)0<x<1.【解析】
(1)直接利用矩形周长求法得出y与x之间的函数关系式;(2)利用矩形的性质分析得出答案.【详解】(1)∵矩形周长为18,其中一条边长为x,设另一边长为y,∴2(x+y)=18,则y=1﹣x;(2)由题意可得:1﹣x>0,解得:0<x<1.【点睛】此题主要考查了函数关系式以及自变量的取值范围,正确得出函数关系式是解题关键.22、(1)该商场第一次购进这款玩具100件;(2)每件玩具的标价至少是100元.【解析】
(1)设该商场第一次购进这款玩具x件,则第二次购进这款玩具2x件,根据两次购得的单价的差值为2元列出分式方程;(2)设每件玩具的标价为y元,根据利润不低于4800元列出不等式并解答.【详解】(1)设该商场第一次购进这款玩具x件,则第二次购进这款玩具2x件,依题意得:解得x=100经检验x=100是原方程的解.即该商场第一次购进这款玩具100件;(2)设每件玩具的标价为y元,则(100+200﹣80)y+80×60%y﹣7200﹣14800≥4800解得y≥100即每件玩具的标价至少是100元.【点睛】考查了分式方程的应用和一元一次不等式的应用.分析题意,找到合适的数量关系是解决问题的关键.23、(1)(1,0);(2)①(2,3);②(3,1)【解析】
(1)把点A的坐标代入直线解析式可求得b=1,则直线的解析式为y=-x+1,令y=0可求得x=1,故此可求得点B的坐标;
(2)①由题l垂直平分OB可知OE=BE=2,将x=2代入直线AB的解析式可求得点D的坐标,设点P的坐标为(2,n),然后依据S△APB=S△APD+S△BPD可得到△APB的面积与n的函数关系式为S△APB=2n-1;由S△ABP=8得到关于n的方程可求得n的值,从而得到点P的坐标;
②如图1所示,过点C作CM⊥l,垂足为M,再过点B作BN⊥CM于点N.设点C的坐标为(p,q),先证明△PCM≌△CBN,得到CM=BN,PM=CN,然后由CM=BN,PM=CN列出关于p、q的方程组可求得p、q的值;如图2所示,同理可求得点C的坐标.【详解】解:(1)∵把A(0,1)代入y=-x+b得b=1,∴直线AB的函数表达式为:y=-x+1.令y=0得:-x+1=0,解得:x=1,∴点B的坐标为(1,0);(2)①∵l垂直平分OB,
∴OE=BE=2.
∵将x=2代入y=-x+1得:y=-2+1=2.
∴点D的坐标为(2,2).
∵点P的坐标为(2,n),
∴PD=n-2.
∵S△APB=S△APD+S△BPD,
∴S△ABP=PD•OE+PD•BE=(n-2)×2+(n-2)×2=2n-1.∵S△ABP=8,∴2n-1=8,解得:n=3.∴点P的坐标为(2,3).②如图1所示:过点C作CM⊥l,垂足为M,再过点B作BN⊥CM于点N.设点C(p,q).∵△PBC为等腰直角三角形,PB为斜边,∴PC=PB,∠PCM+∠MCB=90°,∵CM⊥l,BN⊥CM,∴∠PMC=∠BNC=90°,∠MPC+∠PCM=90°.∴∠MPC=∠NCB.∵PC=BC,,
∴△PCM≌△CBN.
∴CM=BN,PM=CN.
∴,解得.
∴点C的坐标为(3,1).
如图2所示:过点C作CM⊥l,垂足为M,再过点B作BN⊥CM于点N.
设点C(p,q).
∵△PBC为等腰直角三角形,PB为斜边,
∴PC=CB,∠PCM+∠MCB=90°.
∵CM⊥l,BN⊥CM,
∴∠PMC=∠BNC=90°,∠MPC+∠PCM=90°.
∴∠MPC=∠NCB.
在△PCM和△CBN中,
,
∴△PCM≌△CBN.
∴CM=BN,PM=CN.
∴,解得.
∴点C的坐标为(0,2)舍去.
综上所述点C的坐标为(3,1).【点睛】此题考查一次函数的综合应用,全等三角形的性质和判断,解题关键在于掌握待定系数法求一次函数的解析式、割补法求面积、三角形的面积公式,全等三角形的性质和判断,由CM=BN,PM=CN列出关于p、q的方程组.24、(1)C(3,0);(2)不存在;(3)0≤|QA−QO|≤1.【解析】
(1)由勾股定理得:CA2=CE2+AE2,即(8−a)2=a2+12,即可求解;(2)当四边形OPAD为平行四边形时,根据OA的中点即为PD的中点即可求解;(3)当点Q为AO的垂直平分线与直线BC的交点时,QO=QA,则|QA−QO|=0,当点Q在点B处时,|QA−QO|有最大值,即可求解.【详解】解:(1)连接CE,则CE⊥AB,与x轴,y轴分别相交于点A,B,则点A、B的坐标分别为:(8,0)、(0,6),则AB=10,设:OC=a,则CE=a,BE=OB=6,AE=10−6=1,CA=8−a,由勾股定理得:CA2=CE2+AE2,即(8−a)2=a2+12,解得a=3,故点C(3,0);(2)不存在,理由:将点B、C的坐标代入一次函数表达式y=kx+b并解得:直线BC的表达式为:y=−2x+6,设点P(m,n
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 专属2024年商品销售代表协议版
- 专业仓储及配送服务:2024协议范本版A版
- 科技驱动:公司未来发展
- 2025年度彩钢房拆除与绿色建筑认证服务合同范本4篇
- 2025年度影视基地场地借用及拍摄制作合同4篇
- 2025年度科研实验场地使用权出让及研发支持服务合同4篇
- 二零二五年度抽沙船租赁及海洋环境监测协议3篇
- 2025年度新型工业园区土地使用权交易合同范本4篇
- 2025年智能工厂设备租赁居间合同示范文本4篇
- 2025年度长租公寓运营管理服务合同4篇
- 领导沟通的艺术
- 发生用药错误应急预案
- 南浔至临安公路(南浔至练市段)公路工程环境影响报告
- 绿色贷款培训课件
- 大学生预征对象登记表(样表)
- 主管部门审核意见三篇
- 初中数学校本教材(完整版)
- 父母教育方式对幼儿社会性发展影响的研究
- 新课标人教版数学三年级上册第八单元《分数的初步认识》教材解读
- (人教版2019)数学必修第一册 第三章 函数的概念与性质 复习课件
- 重庆市铜梁区2024届数学八上期末检测试题含解析
评论
0/150
提交评论