江苏省金陵中学2024年数学八年级下册期末学业质量监测模拟试题含解析_第1页
江苏省金陵中学2024年数学八年级下册期末学业质量监测模拟试题含解析_第2页
江苏省金陵中学2024年数学八年级下册期末学业质量监测模拟试题含解析_第3页
江苏省金陵中学2024年数学八年级下册期末学业质量监测模拟试题含解析_第4页
江苏省金陵中学2024年数学八年级下册期末学业质量监测模拟试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江苏省金陵中学2024年数学八年级下册期末学业质量监测模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.测试五位学生的“一分钟跳绳”成绩,得到五个各不相同的数据,在统计时出现了一处错误:将最高成绩写得更高了,则计算结果不受影响的是()A.中位数 B.平均数 C.方差 D.极差2.一组数据共50个,分为6组,第1—4组的频数分别是5,7,8,10,第5组的频率是0.20,则第6组的频数是()A.10 B.11 C.12 D.153.关于x的一元二次方程kx2+2x﹣1=0有两个不相等的实数根,则k的取值范围是()A.k>﹣1 B.k>﹣1且k≠0 C.k≠0 D.k≥﹣14.京剧是中国的“国粹”,京剧脸谱是一种具有汉族文化特色的特殊化妆方法由于每个历史人物或某一种类型的人物都有一种大概的谱式,就像唱歌、奏乐都要按照乐谱一样,所以称为“脸谱”如图是京剧华容道中关羽的脸谱图案在下面的四个图案中,可以通过平移图案得到的是A. B. C. D.5.如图,在平行四边形ABCD中,BC=2AB,CE⊥AB于E,F为AD的中点,若∠AEF=54°,则∠B=()A.54° B.60° C.66° D.72°6.如图,在中,,,点D是AB的中点,则A.4 B.5 C.6 D.87.关于二次函数y=﹣2x2+1,以下说法正确的是()A.开口方向向上 B.顶点坐标是(﹣2,1)C.当x<0时,y随x的增大而增大 D.当x=0时,y有最大值﹣8.已知为常数,点在第二象限,则关于的方程根的情况是()A.有两个相等的实数根 B.有两个不相等的实数根 C.没有实数根 D.无法判断9.下列运算错误的是A. B.C. D.10.点关于原点的对称点的坐标为()A. B. C. D.11.如图,一次函数图象经过点A,且与正比例函数y=-x的图象交于点B,则该一次函数的表达式为()A.y=-x+2 B.y=x+2 C.y=x-2 D.y=-x-212.已知四边形ABCD是平行四边形,再从①AB=BC,②∠ABC=90°,③AC=BD,④AC⊥BD四个条件中,选两个作为补充条件后,使得四边形ABCD是正方形,现有下列四种选法,其中错误的是()A.选①② B.选②③ C.选①③ D.选②④二、填空题(每题4分,共24分)13.化简:=_____.14.如图,△ABC中,已知AB=8,∠C=90°,∠A=30°,DE是中位线,则DE的长为_____.15.如图,在第个中,:在边取一点,延长到,使,得到第个;在边上取一点,延长到,使,得到第个,…按此做法继续下去,则第个三角形中以为顶点的底角度数是__________.16.计算:=___________17.一组数据3、4、5、5、6、7的方差是.18.在直角坐标系中,直线y=x+2与y轴交于点A1,按如图方式作正方形A1B1C1O、A2B2C2C1、A3B3C1C2…,A1、A2、A3…在直线y=x+2上,点C三、解答题(共78分)19.(8分)如图,在△ABC中,∠ACB=90°,点D,E,F分别为AB,AC,BC的中点.求证:CD=EF.20.(8分)某校九年级两个班,各选派10名学生参加学校举行的“汉字听写”大赛预赛,各参赛选手的成绩如下:九(1)班:88,91,92,93,93,93,94,98,98,100;九(2)班:89,93,93,93,95,96,96,98,98,1.通过整理,得到数据分析表如下:班级最高分平均分中位数众数方差九(1)班100m939312九(2)班195np8.4(1)直接写出表中m、n、p的值为:m=______,n=______,p=______;(2)依据数据分析表,有人说:“最高分在(1)班,(1)班的成绩比(2)班好.”但也有人说(2)班的成绩要好.请给出两条支持九(2)班成绩更好的理由;(3)学校确定了一个标准成绩,等于或大于这个成绩的学生被评定为“优秀”等级,如果九(2)班有一半的学生能够达到“优秀”等级,你认为标准成绩应定为______分,请简要说明理由.21.(8分)如图1,在6×6的正方形网格中,每个小正方形的边长均为1,每个小正方形的顶点叫做格点.△ABC的顶点在格点上.点D是BC的中点,连接AD.(1)在图2、图3两个网格图中各画出一个与△ABC相似的三角形,要求所画三角形的顶点在格点上,相似比各不相同,且与△ABC的相似比不为1;

(2)tan∠CAD=.22.(10分)如图,△ABC中,点O是边AC上一个动点,过O作直线MN∥BC.设MN交∠ACB的平分线于点E,交∠ACB的外角平分线于点F.(1)求证:OE=OF;(2)当点O在边AC上运动到什么位置时,四边形AECF是矩形?并说明理由.23.(10分)如图,中,点,分别是边,的中点,过点作交的延长线于点,连结.(1)求证:四边形是平行四边形.(2)当时,若,,求的长.24.(10分)某公司开发出一款新的节能产品,该产品的成本价为6元/件,该产品在正式投放市场前通过代销点进行了为期一个月(30天)的试销售,售价为8元/件,工作人员对销售情况进行了跟踪记录,并将记录情况绘成图象(如图),图中的折线ODE表示日销售量y(件)与销售时间x(天)之间的函数关系,已知线段DE表示的函数关系中,时间每增加1天,日销售量减少5件.(1)第24天的日销售量是件,日销售利润是元;(2)求y与x之间的函数关系式,并写出x的取值范围;(3)日销售利润不低于640元的天数共有多少天?试销售期间,日销售最大利润是多少元?25.(12分)如图,在平面直角坐标系中,直线与、轴分别交于、两点.点为线段的中点.过点作直线轴于点.(1)直接写出的坐标;(2)如图1,点是直线上的动点,连接、,线段在直线上运动,记为,点是轴上的动点,连接点、,当取最大时,求的最小值;(3)如图2,在轴正半轴取点,使得,以为直角边在轴右侧作直角,,且,作的角平分线,将沿射线方向平移,点、,平移后的对应点分别记作、、,当的点恰好落在射线上时,连接,,将绕点沿顺时针方向旋转后得,在直线上是否存在点,使得为等腰三角形?若存在,请直接写出点的坐标;若不存在,请说明理由.26.阅读下面的材料:解方程,这是一个一元四次方程,根据该方程的特点,它的解法通常采用换元法降次:设,那么,于是原方程可变为,解得.当时,,∴;当时,,∴;原方程有四个根:.仿照上述换元法解下列方程:(1)(2).

参考答案一、选择题(每题4分,共48分)1、A【解析】

根据中位数的定义解答可得.【详解】解:因为中位数是将数据按照大小顺序重新排列,代表了这组数据值大小的“中点”,不受极端值影响,所以将最高成绩写得更高了,计算结果不受影响的是中位数,故选A.【点睛】本题主要考查方差、极差、中位数和平均数,解题的关键是掌握中位数的定义.2、A【解析】首先根据频数=总数×频率,求得第五组频数;再根据各组的频数和等于总数,求得第六组的频数:根据题意,得第五组频数是50×0.2=1,故第六组的频数是50-5-7-8-1-1=1.故选A.3、B【解析】试题分析:由方程kx2+2x﹣1=1有两个不相等的实数根可得知b2﹣4ac>1,结合二次项系数不为1,即可得出关于k的一元一次不等式组,解不等式组即可得出结论.由已知得:,解得:k>﹣1且k≠1.考点:根的判别式.4、A【解析】

结合图形,根据平移的概念进行求解即可得.【详解】解:根据平移的定义可得图案可以通过A平移得到,故选A.【点睛】本题考查平移的基本概念及平移规律,是比较简单的几何图形变换关键是要观察比较平移前后物体的位置.5、D【解析】

过F作AB、CD的平行线FG,由于F是AD的中点,那么G是BC的中点,即Rt△BCE斜边上的中点,由此可得BC=2EG=2FG,即△GEF、△BEG都是等腰三角形,因此求∠B的度数,只需求得∠BEG的度数即可;易知四边形ABGF是平行四边形,得∠EFG=∠AEF,由此可求得∠FEG的度数,即可得到∠AEG的度数,根据邻补角的定义可得∠BEG的值,由此得解.【详解】过F作FG∥AB∥CD,交BC于G;则四边形ABGF是平行四边形,所以AF=BG,即G是BC的中点;连接EG,在Rt△BEC中,EG是斜边上的中线,则BG=GE=FG=BC;∵AE∥FG,∴∠EFG=∠AEF=∠FEG=54°,∴∠AEG=∠AEF+∠FEG=108°,∴∠B=∠BEG=180°-108°=72°.故选D.【点睛】此题主要考查了平行四边形的性质、直角三角形的性质以及等腰三角形的判定和性质,正确地构造出与所求相关的等腰三角形是解决问题的关键.6、B【解析】

根据直角三角形中,斜边上的中线等于斜边的一半解答即可.【详解】,点D为AB的中点,.故选:B.【点睛】本题考查直角三角形的性质,掌握在直角三角形中斜边上的中线等于斜边的一半是解题的关键.7、C【解析】

根据题目中的函数解析式和二次函数的性质,可以判断各个选项中的说法是否正确,从而可以解答本题.【详解】解:∵二次函数y=﹣2x2+1,∴该函数图象开口向下,故选项A错误;顶点坐标为(0,1),故选项B错误;当x<0时,y随x的增大而增大,故选项C正确;当x=0时,y有最大值1,故选项D错误;故选:C.【点睛】本题考查二次函数的性质、二次函数的最值,解答本题的关键是明确题意,利用二次函数的性质解答.8、B【解析】试题分析:已知点P(a,c)在第二象限,可得a<0,c>0,所以ac<0,即可判定△=b2﹣4ac>0,所以方程有两个不相等的实数根.故选B.考点:根的判别式;点的坐标.9、A【解析】

根据二次根式的加减法、乘法、除法逐项进行计算即可得.【详解】A.与不是同类二次根式,不能合并,故错误,符合题意;B.,正确,不符合题意;C.=,正确,不符合题意;D.,正确,不符合题意.故选A.【点睛】本题考查了二次根式的运算,熟练掌握二次根式的乘除法、加减法的运算法则是解题的关键.10、A【解析】

根据两个点关于原点对称时,它们的坐标符号相反可得答案.【详解】解:根据中心对称的性质,可知:点P(-3,2)关于原点O中心对称的点的坐标为(3,-2).

故选:A.【点睛】本题考查关于原点对称的点的坐标特点,关键是掌握点的坐标的变化规律.11、B【解析】

解:设一次函数的解析式y=kx+b(k≠0),∵一次函数图象经过点A,且与正比例函数y=-x的图象交于点B,∴在直线y=-x中,令x=-1,解得:y=1,则B的坐标是(-1,1).把A(0,1),B(-1,1)的坐标代入一次函数的解析式y=kx+b得:,解得,该一次函数的表达式为y=x+1.故选B.12、B【解析】试题分析:A、由①得有一组邻边相等的平行四边形是菱形,由②得有一个角是直角的平行四边形是矩形,所以平行四边形ABCD是正方形,正确,故本选项不符合题意;B、由②得有一个角是直角的平行四边形是矩形,由③得对角线相等的平行四边形是矩形,所以不能得出平行四边形ABCD是正方形,错误,故本选项符合题意;C、由①得有一组邻边相等的平行四边形是菱形,由③得对角线相等的平行四边形是矩形,所以平行四边形ABCD是正方形,正确,故本选项不符合题意;D、由②得有一个角是直角的平行四边形是矩形,由④得对角线互相垂直的平行四边形是菱形,所以平行四边形ABCD是正方形,正确,故本选项不符合题意.故选B.考点:1.正方形的判定;2.平行四边形的性质.二、填空题(每题4分,共24分)13、1【解析】

根据二次根式的乘法,化简即可得解.【详解】解:==1.故答案为:1.【点睛】本题主要考查二次根式的乘法法则,熟悉掌握法则是关键.14、2【解析】

先由含30°角的直角三角形的性质,得出BC,再由三角形的中位线定理得出DE即可.【详解】因为,△ABC中,∠C=90°,∠A=30°,所以,,因为,DE是中位线,所以,.故答案为2【点睛】本题考核知识点:直角三角形,三角形中位线.解题关键点:熟记直角三角形性质,三角形中位线性质.15、.【解析】

先根据等腰三角形的性质求出的度数,再根据三角形外角的性质及等腰三角形的性质求出,及的度数.【详解】在中,,,,是的外角,,同理可得.故答案为:.【点睛】本题考查的是等腰三角形的性质及三角形外角的性质,根据题意得出、及的度数.16、6【解析】

先取绝对值符号、计算负整数指数幂和零指数幂,再计算加减可得;【详解】解:原式=1+1+4=6故答案为:6【点睛】此题主要考查了实数运算,绝对值,负整数指数幂和零指数幂,正确化简各数是解题关键.17、【解析】

首先求出平均数,然后根据方差的计算法则求出方差.【详解】解:

平均数

=(3+4+5+5+6+7)÷6=5

数据的方差

S2=[(3-5)2+(4-5)2+(5-5)2+(5-5)2+(6-5)2+(7-5)2]=

故答案为

.18、2【解析】

结合正方形的性质结合直线的解析式可得出:A2B1=OC1,A3B2=C1C2,A4B3【详解】解:令一次函数y=x+2中x=0,则y=2,∴点A1的坐标为(0,2),O∵四边形AnBn∴A1B1=OC1令一次函数y=x+2中x=2,则y=4,即A2∴A∴tan∵A∴tan∴A2B1=OC1∴S1=12OC∴Sn=故答案为:22n-1【点睛】本题考查一次函数图象上点的坐标特征、正方形的性质、三角形的面积公式的知识,解题关键在于找到规律,此题属规律性题目,比较复杂.三、解答题(共78分)19、根据直角三角形的性质可得,再根据中位线定理可得,问题得证.【解析】根据直角三角形斜边中中线等于斜边的一半可得,再根据中位线定理可得,从而可以得到20、(1)94,92.2,93;(2)见解析;(3)92.2.【解析】

(1)求出九(1)班的平均分确定出m的值,求出九(2)班的中位数确定出n的值,求出九(2)班的众数确定出p的值即可;(2)分别从平均分,方差,以及中位数方面考虑,写出支持九(2)班成绩好的原因;(3)用中位数作为一个标准即可衡量是否有一半学生达到优秀等级.【详解】解:(1)九(1)班的平均分==94,九(2)班的中位数为(96+92)÷2=92.2,九(2)班的众数为93,故答案为:94,92.2,93;(2)①九(2)班平均分高于九(1)班;②九(2)班的成绩集中在中上游;③九(2)班的成绩比九(1)班稳定;故支持B班成绩好;(3)如果九(2)班有一半的学生评定为“优秀”等级,标准成绩应定为92.2(中位数).因为从样本情况看,成绩在92.2以上的在九(2)班有一半的学生.可以估计,如果标准成绩定为92.2,九(2)班有一半的学生能够评定为“优秀”等级,故答案为92.2.【点睛】本题考查了平均数、中位数、众数以及方差的定义,属于统计中的基本题型,需重点掌握.21、(1)见解析;(2).【解析】

(1)利用相似三角形的性质结合网格特点画三角形即可;(2)利用勾股定理结合锐角三角函数关系求出即可.【详解】解:(1)如图所示:△EMF和△A′B′C′即为所求;(2)由图1可知∠ACB=90°,DC=,AC=,∴tan∠CAD=.故答案为:.【点睛】本题主要考查了相似三角形的性质及锐角三角函数的定义,利用相似三角形的判定方法画出图形是解题关键.22、(1)证明见解析;(2)当点O在边AC上运动到AC中点时,四边形AECF是矩形,理由见解析.【解析】

(1)根据平行线的性质以及角平分线的性质得出∠1=∠2,∠3=∠4,进而得出答案;(2)根据平行四边形的判定先证明AECF是平行四边形,再由证明是矩形即可.【详解】(1)证明:如图,∵MN交∠ACB的平分线于点E,交∠ACB的外角平分线于点F,∴∠2=∠5,∠4=∠6,∵MN∥BC,∴∠1=∠5,∠3=∠6,∴∠1=∠2,∠3=∠4,∴EO=CO,FO=CO,∴OE=OF;(2)解:当点O在边AC上运动到AC中点时,四边形AECF是矩形.理由是:当O为AC的中点时,AO=CO,∵EO=FO,∴四边形AECF是平行四边形,由题意可知CE平分∠ACB,CF平分∠ACB,即∴平行四边形AECF是矩形.【点睛】本题主要考查了矩形的判定、平行四边形的判定等知识,根据已知得出∠ECF=90°是解题关键.23、(1)详见解析;(2)【解析】

(1)根据三角形的中位线的性质得出DE∥BC,再根据已知CF∥AB即可得到结论;

(2)根据等腰三角形的性质三线合一得出,然后利用勾股定理即可得到结论.【详解】(1)证明:∵点D,E分别是边AB,AC的中点,

∴DE∥BC.

∵CF∥AB,

∴四边形BCFD是平行四边形;

(2)解:∵AB=BC,E为AC的中点,

∴BE⊥AC.

∴∵AB=2DB=4,BE=3,【点睛】本题考查了平行四边形的判定和性质,三角形中位线定理,勾股定理,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.24、(1)330;660(2)答案见解析(3)日销售利润不低于640元的天数共有11天,试销售期间,日销售最大利润是720元.【解析】

(1)340﹣(24﹣22)×5=330(件),330×(8﹣6)=660(元).(2)设线段OD所表示的y与x之间的函数关系式为y=kx,将(17,340)代入y=kx中,340=17k,解得:k=20,∴线段OD所表示的y与x之间的函数关系式为y=20x.根据题意得:线段DE所表示的y与x之间的函数关系式为y=340﹣5(x﹣22)=﹣5x+1.联立两线段所表示的函数关系式成方程组,得,解得,∴交点D的坐标为(18,360),∴y与x之间的函数关系式为y=.(3)当0≤x≤18时,根据题意得:(8﹣6)×20x≥640,解得:x≥16;当18<x≤30时,根据题意得:(8﹣6)×(﹣5x+1)≥640,解得:x≤2.∴16≤x≤2.2﹣16+1=11(天),∴日销售利润不低于640元的天数共有11天.∵点D的坐标为(18,360),∴日最大销售量为360件,360×2=720(元),∴试销售期间,日销售最大利润是720元.考点:一次函数的应用.25、(1),(2),(3)存在,或【解析】

(1)求出B,C两点坐标,利用中点坐标公式计算即可.(2)如图1中,作点B关于直线m的对称点,连接CB′,延长CB′交直线m于点P,此时PC-PB的值最大.求出直线CB′的解析式可得点P坐标,作PT∥BC,且PT=CD=5,作TE⊥AC于E,交BC于C′,此时PD′+D′C′+C′E的值最小.(3)如图2中,由题意易知,,.分两种情形:①当时,设.②当时,分别构建方程即可解决问题.【详解】

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论