2024届广东省恩平市八年级下册数学期末学业水平测试模拟试题含解析_第1页
2024届广东省恩平市八年级下册数学期末学业水平测试模拟试题含解析_第2页
2024届广东省恩平市八年级下册数学期末学业水平测试模拟试题含解析_第3页
2024届广东省恩平市八年级下册数学期末学业水平测试模拟试题含解析_第4页
2024届广东省恩平市八年级下册数学期末学业水平测试模拟试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届广东省恩平市八年级下册数学期末学业水平测试模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.下列图形中,可以抽象为中心对称图形的是()A. B.C. D.2.一辆慢车以50千米/小时的速度从甲地驶往乙地,一辆快车以75千米/小时的速度从乙地驶往甲地,甲、乙两地之间的距离为500千米,两车同时出发,则图中折线大致表示两车之间的距离y(千米)与慢车行驶时间t(小时)之间的函数图象是()A. B. C. D.3.下列算式中,正确的是A. B.C. D.4.若与互为相反数,则A. B. C. D.5.下列式子运算正确的是()A. B.C. D.6.如图,E为边长为2的正方形ABCD的对角线上一点,BE=BC,P为CE上任意一点,PQ⊥BC于点Q,PR⊥BE于R,则PQ+PR的值为()A. B. C. D.7.等边三角形的边长为2,则该三角形的面积为()A. B.2 C.3 D.48.不等式组的解集在数轴上可表示为()A. B. C. D.9.对于一组统计数据1,1,6,5,1.下列说法错误的是()A.众数是1 B.平均数是4 C.方差是1.6 D.中位数是610.将方程化成一元二次方程的一般形式,正确的是().A. B. C. D.11.某天,小明走路去学校,开始他以较慢的速度匀速前进,然后他越走越快走了一段时间,最后他以较快的速度匀速前进达到学校.小明走路的速度v(米/分钟)是时间t(分钟)的函数,能正确反映这一函数关系的大致图像是()A. B.C. D.12.如图,在中,度.以的三边为边分别向外作等边三角形,,,若,的面积分别是8和3,则的面积是()A. B. C. D.5二、填空题(每题4分,共24分)13.若分式的值为0,则的值为________.14.在平面直角坐标系中有一点,则点P到原点O的距离是________.15.矩形的对角线与相交于点,,,分别是,的中点,则的长度为________.16.一次函数y=﹣x+4图象与x轴、y轴分别交于点A、点B,点P为正比例函数y=kx(k>0)图象上一动点,且满足∠PBO=∠POA,则AP的最小值为_____.17.一组数据:2,﹣1,0,x,1的平均数是0,则x=_____.18.如图,在反比例函数的图象上有四个点,,,,它们的横坐标依次为,,,,分别过这些点作轴与轴的垂线,则图中阴影部分的面积之和为______.三、解答题(共78分)19.(8分)某商场销售国外、国内两种品牌的智能手机,这两种手机的进价和售价如表所示国外品牌国内品牌进价(万元/部)0.440.2售价(万元/部)0.50.25该商场计划购进两种手机若干部,共需14.8万元,预计全部销售后可获毛利润共2.7万元.[毛利润=(售价﹣进价)×销售量](1)该商场计划购进国外品牌、国内品牌两种手机各多少部?(2)通过市场调研,该商场决定在原计划的基础上,减少国外品牌手机的购进数量,增加国内品牌手机的购进数量.已知国内品牌手机增加的数量是国外品牌手机减少的数量的3倍,而且用于购进这两种手机的总资金不超过15.6万元,该商场应该怎样进货,使全部销售后获得的毛利润最大?并求出最大毛利润20.(8分)先化简,再求值:(a+)÷,其中a=1.21.(8分)在某超市购买2件甲商品和3件乙商品需要180元;购买1件甲商品和4件乙商品需要200元.购买10件甲商品和10件乙商品需要多少元?22.(10分)如图,正方形ABCD中,P为AB边上任意一点,AE⊥DP于E,点F在DP的延长线上,且EF=DE,连接AF、BF,∠BAF的平分线交DF于G,连接GC.(1)求证:△AEG是等腰直角三角形;(2)求证:AG+CG=DG.23.(10分)已知一次函数与正比例函数都经过点,的图像与轴交于点,且.(1)求与的解析式;(2)求⊿的面积.24.(10分)“金牛绿道行“活动需要租用、两种型号的展台,经前期市场调查发现,用元租用的型展台的数量与用元租用的型展台的数量相同,且每个型展台的价格比每个型展台的价格少元.(1)求每个型展台、每个型展台的租用价格分别为多少元(列方程解应用题);(2)现预计投入资金至多元,根据场地需求估计,型展台必须比型展台多个,问型展台最多可租用多少个.25.(12分)如图(1),ΔABC为等腰三角形,AB=AC=a,P点是底边BC上的一个动点,PD∕∕AC,PE∕∕AB.(1)用a表示四边形ADPE的周长为;(2)点P运动到什么位置时,四边形ADPE是菱形,请说明理由;(3)如果ΔABC不是等腰三角形图(2),其他条件不变,点P运动到什么位置时,四边形ADPE是菱形(不必说明理由).26.今年水果大丰收,A,B两个水果基地分别收获水果380件、320件,现需把这些水果全部运往甲、乙两销售点,从A基地运往甲、乙两销售点的费用分别为每件40元和20元,从B基地运往甲、乙两销售点的费用分别为每件15元和30元,现甲销售点需要水果400件,乙销售点需要水果300件.(1)设从A基地运往甲销售点水果x件,总运费为W元,请用含x的代数式表示W,并写出x的取值范围;(2)若总运费不超过18300元,且A地运往甲销售点的水果不低于200件,试确定运费最低的运输方案,并求出最低运费.

参考答案一、选择题(每题4分,共48分)1、B【解析】

根据中心对称图形的概念求解.【详解】A.不是中心对称图形,因为找不到任何这样的一点,旋转180度后它的两部分能够重合;即不满足中心对称图形的定义,故此选项错误;B.是中心对称图形,故此选项正确;C.不是中心对称图形,因为找不到任何这样的一点,旋转180度后它的两部分能够重合;即不满足中心对称图形的定义,故此选项错误;D.不是中心对称图形,因为找不到任何这样的一点,旋转180度后它的两部分能够重合;即不满足中心对称图形的定义,故此选项错误。故选:B.【点睛】此题考查中心对称图形,难度不大.2、C【解析】因为慢车和快车从相距500千米的甲乙两地同时出发,则时间为0小时,两车相距距离为500千米,经过4小时,两车相遇,则此时两车相距距离为0,相遇之后快车经过83小时先到达甲地,此时两车相距(75+50)×83=10003千米>250千米,然后再经过103小时,慢车到达乙地,此时两车相距5003、C【解析】

根据二次根式的混合运算法则逐一计算即可判断.【详解】解:A.,此选项错误;B.,此选项错误;C.,此选项正确;D.,此选项错误;故选:C.【点睛】本题考查二次根式的混合运算,解题的关键是掌握二次根式的混合运算法则.4、A【解析】

根据根式的性质和绝对值的性质,要使与互为相反数,则可得和,因此可计算的的值.【详解】根据根式的性质和绝对值的性质可得:因此解得所以可得故选A.【点睛】本题主要考查根式和绝对值的性质,关键在于根式要大于等于零,绝对值要大于等于零.5、D【解析】

利用二次根式的加减法对A、B进行判断;根据分母有理化对C进行判断;根据完全平方公式对D进行判断.【详解】解:A、原式=﹣,所以A选项错误;B、与不能合并,所以B选项错误;C、原式=,所以C选项错误;D、原式=9﹣6+10=19﹣6,所以D选项正确.故选:D.【点睛】题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.6、B【解析】

连接BP,设点C到BE的距离为h,然后根据S△BCE=S△BCP+S△BEP求出h=PQ+PR,再根据正方形的性质求出h即可.【详解】解:如图,连接BP,设点C到BE的距离为h,

则S△BCE=S△BCP+S△BEP,

即BE•h=BC•PQ+BE•PR,

∵BE=BC,

∴h=PQ+PR,

∵正方形ABCD的边长为2,

∴h=2×.

故选B.【点睛】本题考查了正方形的性质,三角形的面积,熟记性质并作辅助线,利用三角形的面积求出PQ+PR等于点C到BE的距离是解题的关键.7、A【解析】分析:如图,作CD⊥AB,则CD是等边△ABC底边AB上的高,根据等腰三角形的三线合一,可得AD=1,所以,在直角△ADC中,利用勾股定理,可求出CD的长,代入面积计算公式,解答出即可;详解:作CD⊥AB,

∵△ABC是等边三角形,AB=BC=AC=2,

∴AD=1,

∴在直角△ADC中,

CD===,

∴S△ABC=×2×=;

故选A.点睛:本题主要考查了等边三角形的性质及勾股定理的应用,根据题意,画出图形可利于解答,体现了数形结合思想.8、D【解析】

先解不等式组可求得不等式组的解集是,再根据在数轴上表示不等式解集的方法进行表示.【详解】解不等式组可求得:不等式组的解集是,故选D.【点睛】本题主要考查不等组的解集数轴表示,解决本题的关键是要熟练掌握正确表示不等式组解集的方法.9、D【解析】

根据中位数、众数、方差等的概念计算即可得解.【详解】A、这组数据中1都出现了1次,出现的次数最多,所以这组数据的众数为1,此选项正确;B、由平均数公式求得这组数据的平均数为4,故此选项正确;C、S2=[(1﹣4)2+(1﹣4)2+(6﹣4)2+(5﹣4)2+(1﹣4)2]=1.6,故此选项正确;D、将这组数据按从大到校的顺序排列,第1个数是1,故中位数为1,故此选项错误;故选D.考点:1.众数;2.平均数;1.方差;4.中位数.10、B【解析】

通过移项把方程4x2+5x=81化成一元二次方程的一般形式.【详解】方程4x2+5x=81化成一元二次方程的一般形式是4x2+5x-81=1.故选B.【点睛】此题主要考查了一元二次方程的一般形式,任何一个关于x的一元二次方程经过整理,都能化成如下形式ax2+bx+c=1(a≠1).这种形式叫一元二次方程的一般形式.其中ax2叫做二次项,a叫做二次项系数;bx叫做一次项;c叫做常数项.11、A【解析】

首先判断出函数的横、纵坐标所表示的意义,然后再根据题意进行解答.【详解】纵坐标表示的是速度、横坐标表示的是时间;由题意知:小明的走路去学校应分为三个阶段:①匀速前进的一段时间,此时的函数是平行于横坐标的一条线段,可排除C、D选项;②加速前进的一段时间,此时的函数是一段斜率大于0的一次函数;③最后匀速前进到达学校,此时的函数是平行于横坐标的一条线段,可排除B选项;故选A.【点睛】本题应首先看清横轴和纵轴表示的量,然后根据实际情况采用排除法求解.12、D【解析】

先设AC=b,BC=a,AB=c,根据勾股定理有c2+b2=a2,再根据等式性质可得c2+b2=a2,再根据等边三角形的性质以及特殊三角函数值,易求得S3=×sin60°a•a=a2,同理可求S2=b2,S1=c2,从而可得S1+S2=S3,易求S1.【详解】解:如图,设等边三角形△A'BC,△AB'C,△ABC'的面积分别是S3,S2,S1,设AC=b,BC=a,AB=c,∵△ABC是直角三角形,且∠BAC=90度,∴c2+b2=a2,∴c2+b2=a2,又∵S3=×sin60°a•a=a2,同理可求S2=b2,S1=c2,∴S1+S2=S3,∵S3=8,S2=3,∴S1=S3−S2=8−3=5,故选:D.【点睛】本题考查了勾股定理,等边三角形的性质、特殊三角函数值的应用.解题关键是根据等边三角形的性质求出每一个三角形的面积.二、填空题(每题4分,共24分)13、2【解析】由分式的值为0时,分母不能为0,分子为0,可得2x-4=0,x+1≠0,解得x=2,故选C.14、13【解析】

根据点的坐标利用勾股定理,即可求出点P到原点的距离【详解】解:在平面直角坐标系中,点P到原点O的距离为:,故答案为:13.【点睛】本题主要考查学生对勾股定理和点的坐标的理解和掌握,此题难度不大,属于基础题.15、1【解析】

分析题意,知道,分别是,的点,则可知是△AOD的中位线;结合中位线的性质可知=OA,故只要求出OA的长即可;已知矩形的一条对角线长,则可得出AC的长,进而得出OA的长,便可得解.【详解】∵四边形ABCD是矩形,∴BD=AC=4,∴OA=2.∵,是DO、AD的中点,∴是△AOD的中位线,∴=OA=1.故答案为:1【点睛】此题考查中位线的性质,矩形的性质,解题关键在于利用中位线性质求解16、2﹣2【解析】如图所示:因为∠PBO=∠POA,所以∠BPO=90°,则点P是以OB为直径的圆上.设圆心为M,连接MA与圆M的交点即是P,此时PA最短,∵OA=4,OM=2,∴MA=又∵MP=2,AP=MA-MP∴AP=.17、-2【解析】

根据平均数的公式可得关于x的方程,解方程即可得.【详解】由题意得,解得:x=-2,故答案为:-2.【点睛】本题考查了平均数,熟练掌握平均数的计算公式是解题的关键.18、2【解析】

由题意,图中阴影部分的面积之和=×矩形AEOF的面积,根据比例系数k的几何意义即可解决问题;【详解】解:如图,∵反比例函数的解析式为,∴矩形AEOF的面积为1.由题意,图中阴影部分的面积之和=×矩形AEOF的面积=2,故答案为2.【点睛】本题考查反比例函数的几何意义,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.三、解答题(共78分)19、(1)商场计划购进国外品牌手机20部,国内品牌手机30部;(2)当该商场购进国外品牌手机15部,国内品牌手机45部时,全部销售后获利最大,最大毛利润为3.15万元.【解析】

(1)设商场计划购进甲种手机x部,乙种手机y部,根据两种手机的购买金额为14.8万元和两种手机的销售利润为2.7万元建立方程组求出其解即可;(2)设甲种手机减少a部,则乙种手机增加3a部,表示出购买的总资金,由总资金部超过15.6万元建立不等式就可以求出a的取值范围,再设销售后的总利润为W元,表示出总利润与a的关系式,由一次函数的性质就可以求出最大利润.【详解】(1)设商场计划购进国外品牌手机x部,国内品牌手机y部,由题意,得:,解得,答:商场计划购进国外品牌手机20部,国内品牌手机30部;(2)设国外品牌手机减少a部,则国内手机品牌增加3a部,由题意,得:0.44(20-a)+0.2(30+3a)≤15.6,解得:a≤5,设全部销售后获得的毛利润为w万元,由题意,得:w=0.06(20-a)+0.05(30+3a)=0.09a+2.7,∵k=0.09>0,∴w随a的增大而增大,∴当a=5时,w最大=3.15,答:当该商场购进国外品牌手机15部,国内品牌手机45部时,全部销售后获利最大,最大毛利润为3.15万元.20、2.【解析】

分析:把a+通分化简,再把除法转化为乘法,并把分子、分母分解因式约分,化成最简分式(或整式)后把a=1代入计算.详解:(a+)÷=[+]•=•=•=,当a=1时,原式==2.点睛:本题考查了分式的化简求值,熟练掌握分式混合运算的运算法则是解答本题的关键,本题也考查了运用平方差公式和完全平方公式分解因式.21、购买10件甲商品和10件乙商品需要1元【解析】

设购买1件甲商品需要x元,购买1件乙商品需要y元,根据“购买2件甲商品和3件乙商品需要180元;购买1件甲商品和4件乙商品需要200元”,即可得出关于x、y的二元一次方程,解之即可得出x、y的值,再将其代入10x+10y中即可求出结论.【详解】解:设购买1件甲商品需要x元,购买1件乙商品需要y元,根据题意得:,解得:,∴10x+10y=1.答:购买10件甲商品和10件乙商品需要1元.【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.22、证明见解析【解析】试题分析:(1)根据线段垂直平分线的定义得到AF=AD,根据等腰三角形的性质、角平分线的定义证明即可;

(2)作CH⊥DP,交DP于H点,证明△ADE≌△DCH(AAS),得到CH=DE,DH=AE=EG,证明CG=GH,AG=DH,计算即可.试题解析:(1)证明:∵DE=EF,AE⊥DP,∴AF=AD,∴∠AFD=∠ADF,∵∠ADF+∠DAE=∠PAE+∠DAE=90°,∴∠AFD=∠PAE,∵AG平分∠BAF,∴∠FAG=∠GAP.∵∠AFD+∠FAE=90°,∴∠AFD+∠PAE+∠FAP=90°∴2∠GAP+2∠PAE=90°,即∠GAE=45°,∴△AGE为等腰直角三角形;(2)证明:作CH⊥DP,交DP于H点,∴∠DHC=90°.∵AE⊥DP,∴∠AED=90°,∴∠AED=∠DHC.∵∠ADE+∠CDH=90°,∠CDH+∠DCH=90°,∴∠ADE=∠DCH.∵在△ADE和△DCH中,,∴△ADE≌△DCH(AAS),∴CH=DE,DH=AE=EG.∴EH+EG=EH+HD,即GH=ED,∴GH=CH.∴CG=GH.∵AG=EG,∴AG=DH,∴CG+AG=GH+HD,∴CG+AG=(GH+HD),即CG+AG=DG.23、(1)或;⊿的面积为15个平方单位.【解析】分析:本题的⑴求正比例函数解析式可通过来解决.而要求的解析式则还需要一个点的坐标,这个通过来解决;⑵问通过结合⑴问的坐标来确定⊿解底边长和高长,利用三角形的面积公式求解.详解:⑴.∵正比例函数过点;∴解得:∴根据勾股定理可求设点的坐标为.又∵,则解得或∴点的坐标为或又∵一次函数同时也过点∴或;分别解得或∴或⑵.根据⑴的解答画出示意图,过作轴∵,的坐标为或∴∴⊿=⊿=∴综上所解,⊿的面积为15个平方单位.点睛:本题要注意两点:其一.所需线段的长度可以由坐标直接求出,也可能借助于勾股定理计算;其二.要注意根据绝对值的意义进行分类讨论,也就是可能有多解.24、(1)每个A型展台,每个B型展台的租用价格分别为800元、1200元;(2)B型展台最多可租用31个.【解析】

(1)首先设每个A型展台的租用价格为x元,则每个B型展台的租用价格为(x+400)元,根据关键语句“用1600元租用的A型展台的数量与用2400元租用的B型展台的数量相同.”列出方程,解方程即可.(2)根据预计投入资金至多80000元,列不等式可解答.【详解】解:(1)设每个A型展台的租用价格为x元,则每个B型展台的租用价格为(x+400)元,由题意得:,解得:x=800,经检验:x=800是原分式方程的解,∴B型展台价格:x+400=800+400=1200,答:每个A型展台,每个B型展台的租用价格分别为800元、1200元;(2)设租用B型展台a个,则租用A型展台(a+22)个,800(a+22)+1200a≤80000,a≤31.2,答:B型展台最多可租用31个.【点睛】本题考查了分式方程的应用和一元一次不等式的应用,弄清题意,表示出A、B两种展台的租用价格,确认相等关系和不等关系是解决问题的关键.25、(1)2a;(2)当P为BC中点时,四边形ADPE是菱形,见解析;(3)P运动到∠A的平分线上时,四边形ADPE是菱形,理由见解析.【解析】

(1)根据平行线的性质和等腰三角形的性质证明∠B=∠DPB,∠C=∠EPC,进而可得DB=DP,PE=EC,从而可得四边形ADPE的周长=AD+DP+PE+AE=AB+AC;(2)当P运动到BC中点时,四边形ADPE是菱形;首先证明四边形ADPE是平行四边形,再证明DP=PE即可得到四边形ADPE是菱形;(3)P运动到∠A的平分线上时,四边形ADPE是菱形,首先证明四边形ADPE是平行四边形,再根据平行线的性质可得∠1=∠3,从而可证出∠2=∠3,进而可得AE=EP,然后可得四边形ADPE是菱形.【详解】(1)∵PD∥AC,PE∥AB,∴∠DPB=∠C,∠EPC=∠B,∵AB=AC,∴∠B=∠C,∴∠B=∠D

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论