上海市宝山区名校2024届八年级数学第二学期期末质量检测试题含解析_第1页
上海市宝山区名校2024届八年级数学第二学期期末质量检测试题含解析_第2页
上海市宝山区名校2024届八年级数学第二学期期末质量检测试题含解析_第3页
上海市宝山区名校2024届八年级数学第二学期期末质量检测试题含解析_第4页
上海市宝山区名校2024届八年级数学第二学期期末质量检测试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

上海市宝山区名校2024届八年级数学第二学期期末质量检测试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.已知:如图,菱形ABCD对角线AC与BD相交于点O,E为BC的中点,AD=6cm,则OE的长为()A.6cm B.4cm C.3cm D.2cm2.如图所示图形中既是中心对称图形,又能镶嵌整个平面的有()A.①②③④ B.①②③ C.②③ D.③3.使式子x-3有意义的x的取值范围是()A.x≥0 B.x>0 C.x>3 D.x≥34.以下列长度的线段为边,能构成直角三角形的是()A.2,3,4 B.4,5,6 C.8,13,5 D.1,,15.一个直角三角形两条直角边的长分别为5,12,则其斜边上的高为()A. B.13 C.6 D.256.平行四边形不一定具有的性质是()A.对角线互相垂直 B.对边平行且相等 C.对角线互相平分 D.对角相等7.下列命题正确的是()A.在同一平面内,可以把半径相等的两个圆中的一个看成是由另一个平移得到的.B.两个全等的图形之间必有平移关系.C.三角形经过旋转,对应线段平行且相等.D.将一个封闭图形旋转,旋转中心只能在图形内部.8.用配方法解方程时,配方结果正确的是()A. B.C. D.9.图中的两个三角形是位似图形,它们的位似中心是()A.点P B.点DC.点M D.点N10.在平面直角坐标系中,点(–1,–2)在第()象限.A.一B.二C.三D.四二、填空题(每小题3分,共24分)11.将点向右平移4个单位,再向下平移3个单位,则平移后点的坐标是__________.12.如图,正方形的边长为4,在这个正方形内作等边三角形(三角形的顶点可以在正方形的边上),使它们的中心重合,则的顶点到正方形的顶点的最短距离是___________.13.如图,矩形中,,,将矩形沿折叠,点落在点处.则重叠部分的面积为______.14.在一次芭蕾舞比赛中有甲、乙两个团的女演员参加表演,她们的平均身高相同,若S甲2=1.5,S乙2=2.5,则_____(填“甲”或“乙”)表演团的身高更整齐.15.函数中,自变量的取值范围是___.16.化简的结果是_______.17.如图,△ACB和△ECD都是等腰直角三角形,△ACB的顶点A在△ECD的斜边DE上,若,则=___.18.某数学学习小组发现:通过连多边形的对角线,可以把多边形内角和问题转化为三角形内角和问题.如果从某个多边形的一个顶点出发的对角钱共有3条,那么该多边形的内角和是______度.三、解答题(共66分)19.(10分)如图,在正方形ABCD的外侧,作等边三角形BCE,连接AE,DE.(1)求证:AE=DE(2)过点D作DF⊥AE,垂足为F,若AB=2cm,求DF的长.20.(6分)如图,直线y1=x+1交x、y轴于点A、B,直线y2=﹣2x+4交x、y轴与C、D,两直线交于点E.(1)求点E的坐标;(2)求△ACE的面积.21.(6分)如图所示,四边形ABCD是平行四边形,AC、BD交于点O,∠1=∠1.(1)求证:四边形ABCD是矩形;(1)若∠BOC=110°,AB=4cm,求四边形ABCD的面积.22.(8分)如图,在平面直角坐标系中,点是原点,四边形是菱形,点的坐标为,点在轴的负半轴上,直线与轴交于点,与轴交于点.(1)求直线的解析式;(2)动点从点出发,沿折线方向以1个单位/秒的速度向终点匀速运动,设的面积为,点的运动时间为秒,求与之间的函数关系式.23.(8分)小诚响应“低碳环保,绿色出行”的号召,一直坚持跑步与步行相结合的上学方式已知小诚家距离学校2200米,他步行的平均速度为80米分,跑步的平均速度为200米分若他要在不超过20分钟的时间内从家到达学校,至少需要跑步多少分钟?24.(8分)如图,点E,F分别是锐角∠A两边上的点,AE=AF,分别以点E,F为圆心,以AE的长为半径画弧,两弧相交于点D,连接DE,DF.(1)请你判断所画四边形的性状,并说明理由;(2)连接EF,若AE=8厘米,∠A=60°,求线段EF的长.25.(10分)如图,在每个小正方形的边长都是的正方形网格中,的三个顶点都在小正方形的格点上.将绕点旋转得到(点、分别与点、对应),连接,.(1)请直接在网格中补全图形;(2)四边形的周长是________________(长度单位)(3)直接写出四边形是何种特殊的四边形.26.(10分)在正方形中,点是边上一个动点,连结,,点,分别为,的中点,连结交直线于点E.(1)如图1,当点与点重合时,的形状是_____________________;(1)当点在点M的左侧时,如图1.①依题意补全图1;②判断的形状,并加以证明.

参考答案一、选择题(每小题3分,共30分)1、C【解析】

根据菱形的性质,各边长都相等,对角线垂直平分,可得点O是AC的中点,证明EO为三角形ABC的中位线,计算可得.【详解】解:∵四边形是菱形,∴,,∵为的中点,∴是的中位线,∴,故选:C.【点睛】本题考查了菱形的性质,三角形中位线的性质,熟练掌握几何图形的性质是解题关键.2、C【解析】

当围绕一点拼在一起的几个多边形的内角和为360°时,就能够拼成一个平面图形.符合此条件的中心对称图形即可选.【详解】正三角形不是中心对称图形,圆是中心对称图形但不能镶嵌,正六边形和平行四边形是中心对称图形也能镶嵌.故选C【点睛】判断中心对称图形是要寻找对称中心,图形旋转180度后与原图形重合.当围绕一点拼在一起的几个多边形的内角和为360°时,就能够拼成一个平面图形.3、D【解析】

根据二次根式有意义的条件:被开方数是非负数,列不等式求解.【详解】解:∵x-3式子有意义,

∴x-3≥0,

解得:x≥3,

故选D..【点睛】本题考查了二次根式的意义的条件.关键是把握二次根式中的被开方数必须是非负数,否则二次根式无意义.4、D【解析】

欲求证是否为直角三角形,这里给出三边的长,只要验证两小边的平方和等于最长边的平方即可.【详解】解:A、因为22+32≠42,所以不能组成直角三角形;B、因为52+42≠62,所以不能组成直角三角形;C、因为52+82≠132,所以不能组成直角三角形;D、因为12+12=()2,所以能组成直角三角形.故选:D.【点睛】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.5、A【解析】试题分析:∵直角三角形的两条直角边的长分别为5,12,

∴斜边为=13,

∵S△ABC=×5×12=×13h(h为斜边上的高),

∴h=.

故选A.6、A【解析】

结合平行四边形的性质即可判定。【详解】结合平行四边形的性质可知选项B、C、D均正确,但平行四边形的对角线不垂直,则A不正确.故选A.【点睛】本题考查了平行四边形的性质,熟练掌握平行四边形的性质是正确解题的关键。7、A【解析】

根据平移的性质:平移后图形的大小、方向、形状均不发生改变结合选项即可得出答案.【详解】解:A、经过旋转后的图形两个图形的大小和形状也不变,半径相等的两个圆是等圆,圆还具有旋转不变性,故本选项正确;B、两个全等的图形位置关系不明确,不能准确判定是否具有平移关系,错误;C、三角形经过旋转,对应线段相等但不一定平行,所以本选项错误;D、旋转中心可能在图形内部,也可能在图形边上或者图形外面,所以本选项错误.故选:A.【点睛】本题考查平移、旋转的基本性质,注意掌握①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.8、A【解析】

利用配方法把方程变形即可.【详解】用配方法解方程x2﹣6x﹣8=0时,配方结果为(x﹣3)2=17,故选A.【点睛】本题考查了解一元二次方程﹣配方法,熟练掌握配方法解一元二次方程的基本步骤是解本题的关键.9、A【解析】试题分析:根据位似变换的定义:对应点的连线交于一点,交点就是位似中心.即位似中心一定在对应点的连线上.解:∵位似图形的位似中心位于对应点连线所在的直线上,点M、N为对应点,所以位似中心在M、N所在的直线上,因为点P在直线MN上,所以点P为位似中心.故选A.考点:位似变换.10、C【解析】分析:根据在平面直角坐标系中点的符号特征求解即可.详解:∵-1<0,-2<0,∴点(–1,–2)在第三象限.故选C.点睛:本题考查了平面直角坐标系中点的坐标特征.第一象限内点的坐标特征为(+,+),第二象限内点的坐标特征为(-,+),第三象限内点的坐标特征为(-,-),第四象限内点的坐标特征为(+,-),x轴上的点纵坐标为0,y轴上的点横坐标为0.二、填空题(每小题3分,共24分)11、(3,-1)【解析】

直接利用平移中点的变化规律:横坐标右移加,左移减;纵坐标上移加,下移减,据此可得.【详解】将点A(-1,2)向右平移4个单位长度,再向下平移3个单位长度,

则平移后点的坐标是(-1+4,2-3),即(3,-1),

故答案为:(3,-1).【点睛】此题考查坐标与图形变化-平移,解题关键在于掌握左右移动改变点的横坐标,左减,右加;上下移动改变点的纵坐标,下减,上加.12、【解析】

当G,O,C共线时,△EFG的顶点到正方形ABCD的顶点的最短,即点G在对角线上,在△AOE中,∠CAE=45°,∠AOE=60°,OE=r,解三角形可求r,即可求最短距离.【详解】如图:当G,O,C共线时,△EFG的顶点到正方形ABCD的顶点的最短,即点G在对角线上.作EM⊥AC于M∵ABCD是正方形,AB=4∴AC=,AO=,∠CAB=45°∵△EFG是等边三角形∴∠GOE=120°∴∠AOE=60°设OE为r∵∠AOE=60°,ME⊥AO∴MO=OE=r,ME=MO=r∵∠MAE=45°,AM⊥ME∴∠MAE=∠MEA=45°,∴AM=ME=r,∵AM+MO=AO∴r+r=∴r=∵AG=AM=MO+OG=r+r+r=∴GC=故答案为:.【点睛】本题主要考查了两点间距离最短,由题意分析出距离最短的情况是解题的关键.13、10【解析】

根据翻折的特点得到,.设,则.在中,,即,解出x,再根据三角形的面积进行求解.【详解】∵翻折,∴,,又∵,∴,∴.设,则.在中,,即,解得,∴,∴.【点睛】此题主要考查勾股定理,解题的关键是熟知翻折的性质及勾股定理的应用.14、甲【解析】

根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【详解】解:由于S2甲<S乙2,则成绩较稳定的演员是甲.故答案为甲.【点睛】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.15、【解析】

根据二次根式的性质,被开方数大于或等于0,可以求出x的范围.【详解】根据题意得:,解得:.故答案是:.【点睛】函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.16、4【解析】

根据算术平方根的定义解答即可.【详解】=4.故答案为:4.【点睛】本题考查了算术平方根的意义,一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根.正数a有一个正的算术平方根,0的算术平方根是0,负数没有算术平方根.17、【解析】

根据等边三角形的性质就可以得出△AEC≌△BDC,就可以得出AE=BD,∠E=∠BDC,由等腰直角三角形的性质就可以得出∠ADB=90°,由勾股定理就可以得出:,再设AE=k,则AD=3k,BD=k,求出BC=k,进而得到的值.【详解】∵△ACB与△ECD都是等腰直角三角形,∴∠ECD=∠ACB=90°,∠E=∠ADC=∠CAB=45°,EC=DC,AC=BC,∴,∠ECD−∠ACD=∠ACB−∠ACD,∴∠ACE=∠BCD.在△AEC和△BDC中,,∴△AEC≌△BDC(SAS),∴AE=BD,∠E=∠BDC,∴∠BDC=45°,∴∠BDC+∠ADC=90°,即∠ADB=90°.∴.∵,∴可设AE=k,则AD=3k,BD=k,∴,∴BC=,∴.故答案为:.【点睛】此题考查勾股定理、等腰直角三角形、全等三角形的判定与性质,解题关键在于“设k法”列出比例式即可.18、1【解析】

由多边形的一个顶点出发的对角线共有(n-3)条可求出边数,然后求内角和.【详解】∵多边形的一个顶点出发的对角线共有(n-3)条,∴n-3=3,∴n=6,∴内角和=(6-2)×180°=1°,故答案是:1.【点睛】本题运用了多边形的内角和定理,关键是要知道多边形的一个顶点出发的对角线共有(n-3)条.三、解答题(共66分)19、(1)详见解析;(2)【解析】

(1)证明△ABE≌△DCE,可得结论;(2)作辅助线,构建直角三角形,根据等腰三角形的性质得∠BCG=30°,∠DEF=30°,利用正方形的边长计算DE的长,从而得DF的长.【详解】(1)证明:∵四边形ABCD是正方形,∴AB=CD,∠ABC=∠DCB=90°,∵△BCE是等边三角形,∴BE=CE,∠EBC=∠ECB=60°,即∠ABE=∠DCE=150°,∴△ABE≌△DCE,∴AE=DE;(2)解:过点E作EG⊥CD于G,∵DC=CE,∠DCE=150°,∴∠CDE=∠CED=15°,∴∠ECG=30°,∵CB=CD=AB=2,∴EG=1,CG=,在Rt△DGE中,DE=,在Rt△DEF中,∠EDA=∠DAE=90°﹣15°=75°∴∠DEF=30°,∴DF=DE=(cm).【点睛】本题考查了正方形的性质、等边三角形的性质、全等三角形的判定和性质、等腰三角形的判定和性质,题目的综合性很好,难度不大.20、(1)(1,2)(2)1【解析】分析:(1)联立两函数的解析式,解方程组即可;(2)先根据函数解析式求得点A、C的坐标,即可得线段AC的长,再根据三角形的面积公式计算即可.详解:(1)∵,∴,∴E(1,2);(2)当y1=x+1=0时,解得:x=﹣1,∴A(﹣1,0),当y2=﹣2x+4=0时,解得:x=2,∴C(2,0),∴AC=2﹣(﹣1)=1,==1.点睛:本题考查了两直线相交或平行的问题,解题的关键是根据两直线解析式求出它们的交点的坐标及它们和x轴的交点的坐标.21、(1)详见解析;(1)【解析】

(1)因为∠1=∠1,所以BO=CO,1BO=1CO,又因为四边形ABCD是平行四边形,所以AO=CO,BO=OD,则可证AC=BD,根据对角线相等的平行四边形是矩形即可判定;

(1)在△BOC中,∠BOC=110°,则∠1=∠1=30°,AC=1AB,根据勾股定理可求得BC的值,则四边形ABCD的面积可求.【详解】(1)证明:∵∠1=∠1,

∴BO=CO,即1BO=1CO.

∵四边形ABCD是平行四边形,

∴AO=CO,BO=OD,

∴AC=1CO,BD=1BO,

∴AC=BD.

∵四边形ABCD是平行四边形,

∴四边形ABCD是矩形;

(1)在△BOC中,∵∠BOC=110°,

∴∠1=∠1=(180°-110°)÷1=30°,

∴在Rt△ABC中,AC=1AB=1×4=8(cm),

∴BC=(cm).∴四边形ABCD的面积=4(cm1)【点睛】此题把矩形的判定、勾股定理和平行四边形的性质结合求解.考查学生综合运用数学知识的能力.解决本题的关键是读懂题意,得到相应的四边形的各边之间的关系.22、(1);(2).【解析】

(1)由点A的坐标,求出OA的长,根据四边形ABCO为菱形,利用菱形的四条边相等得到OC=OA,求出OC的长,即可确定出C的坐标,设直线AC解析式为y=kx+b,将A与C代入求出k与b的值,即可确定出直线AC的解析式;(2)对于直线AC解析式,令x=0,得到y的值,即为OE的长,由OD-OE求出DE的长,当点P在线段AB上时,由P的速度为1个单位/秒,时间为t秒,表示出AP,由AB-AP表示出PB,△PEB以PB为底边,DE为高,表示出S与t的关系式,并求出t的范围即可;当P在线段BC上时,设点E到直线BC的距离h,由P的速度为1个单位/秒,时间为t秒,则BP的长为t-5,△ABC的面积为菱形面积(OC为底,OD为高)的一半,△AEB的面积以AB为底,DE为高,△BEC以BC为底边,h为高,利用等量关系式,建立方程,解出h的值,△PEB以BP为底边,h为高,表示出S与t的关系式,并求出t的范围即可.【详解】解:(1)∵点的坐标为,∴,在中,根据勾股定理,∴,∵菱形,∴,∴,设直线的解析式为:,把代入得:解得,∴;(2)令时,得:,则点,∴,依题意得:,①当点在直线上运动时,即当时,∴,②当点在直线上时,即当时,∴;设点E到直线的距离,∴,∴,∴,∴,综上得:.故答案为(1);(2).【点睛】此题属于一次函数综合题,涉及的知识有:坐标与图形性质,待定系数法求一次函数解析式,勾股定理,菱形的性质,利用了数形结合及分类讨论的思想,熟练掌握待定系数法是解本题的关键.23、小诚至少需要跑步5分钟.【解析】

设他需要跑步x分钟,根据他要在不超过20分钟的时间内从家到达学校可以列出相应的不等式,从而可以解答本题.【详解】设他需要跑步x分钟,由题意可得,解得,.答:小诚至少需要跑步5分钟.【点睛】本题考查了一元一次不等式的应用,弄清题意,找准不等关系列出不等式是解答本题的关键.24、(1)详见解析(2)EF=8【解析】

(1)由AE=AF=ED=DF,根据四条边都相等的四边形是菱形,即可证得:四边形AEDF是菱形,(2)首先连接EF,由AE=AF,∠A=60°,可证得△EAF是等边三角形,则可求得线段EF的长.【详解】解:(1)菱形,理由如下:∵根据题意得:AE=AF=ED=DF,∴四边形AEDF是菱形;(2)连接EF,∵AE=AF,∠A=60°,∴△EAF是等边三角形,∴EF=AE=8厘米.25、(1)见解析;(2);(3)正方形,见解析【解析】

(1)根据中心对称的特点得到点A1、C1,顺次连线即可得到图形;(2)根据图形分别求出AC、、、的长即可得到答案;(3)求出A

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论