版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024年湖北省孝感市八校联谊八年级数学第二学期期末学业质量监测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.下列运算正确的是()A. B. C. D.2.已知是关于的一元二次方程的根,则的值是()A.-1 B.3 C.1 D.-33.下列不能判断是正方形的有()A.对角线互相垂直的矩形 B.对角线相等的矩形C.对角线互相垂直且相等的平行四边形 D.对角线相等的菱形4.下列命题中是正确的命题为A.有两边相等的平行四边形是菱形B.有一个角是直角的四边形是矩形C.四个角相等的菱形是正方形D.两条对角线互相垂直且相等的四边形是平行四边形5.如图,在△ABC中,点D,E分别在边AB,AC上,DE∥BC,已知AE=6,,则EC的长是()A.4.5 B.8 C.10.5 D.146.下列各式计算正确的是()A.(2a2)•(3a3)=6a6 B.6a2b÷2a=3bC.3a2﹣2a2=a2 D.+=7.如图,在中,,若的周长为13,则的周长为()A. B. C. D.8.已知,一次函数y=kx+b的图象如图,下列结论正确的是()A.k>0,b>0 B.k>0,b<0 C.k<0,b>0 D.k<0,b<09.根据以下程序,当输入x=﹣2时,输出结果为()A.﹣5 B.﹣2 C.0 D.310.如图,在平行四边形ABCD中,∠BAC=78°,∠ACB=38°,则∠D的度数是(
)A.52° B.64° C.78° D.38°二、填空题(每小题3分,共24分)11.如图,在中,对角线,相交于点,添加一个条件判定是菱形,所添条件为__________(写出一个即可).12.如图,正方形ABCD是由两个小正方形和两个小长方形组成的,根据图形写出一个正确的等式:_________.13.如果多边形的每个内角都等于,则它的边数为______.14.一个小区大门的栏杆如图所示,垂直地面于,平行于地面,那么_________.15.如图,正方形ABCD中,点E是对角线BD上的一点,BE=BC,过点E作EF⊥AB,EG⊥BC,垂足分别为点F,G,则正方形FBGE与正方形ABCD的相似比为_____.16.已知点A(m,n),B(5,3)关于x轴对称,则m+n=______.17.函数中,自变量的取值范围是___.18.要使式子有意义,则的取值范围是__________.三、解答题(共66分)19.(10分)如图,在平面直角坐标系中,A9m,0、Bm,0m0,以AB为直径的⊙M交y轴正半轴于点C,CD是⊙M的切线,交x轴正半轴于点D,过A作AECD于E,交⊙于F.(1)求C的坐标;(用含m的式子表示)(2)①请证明:EFOB;②用含m的式子表示AFC的周长;(3)若,,分别表示的面积,记,对于经过原点的二次函数,当时,函数y的最大值为a,求此二次函数的解析式.20.(6分)如图,在中,,,,.求的周长;判断是否是直角三角形,并说明理由.21.(6分)观察下面的变形规律:,解答下面的问题:(1)若为正整数,请你猜想;(2)计算:.22.(8分)如图,在▱ABCD中,E,F分别是AD,BC上的点,且DE=BF,AC⊥EF.(1)求证:四边形AECF是菱形(2)若AB=6,BC=10,F为BC中点,求四边形AECF的面积23.(8分)计算或化简:(1);(2)24.(8分)平面直角坐标系中,直线y=2kx-2k(k>0)交y轴于点B,与直线y=kx交于点A.(1)求点A的横坐标;(2)直接写出的x的取值范围;(3)若P(0,3)求PA+OA的最小值,并求此时k的值;(4)若C(0,2)以A,B,C,D为顶点的四边形是以BC为一条边的菱形,求k的值.25.(10分)△ABC在平面直角坐标系xOy中的位置如图所示.(1)作△ABC关于点O成中心对称的△A1B1C1;(2)作出将△A1B1C1向右平移3个单位,再向上平移4个单位后的△A2B2C2;(3)请直接写出点B2关于x轴对称的点的坐标.26.(10分)已知向量,(如图),请用向量的加法的平行四边形法则作向量(不写作法,画出图形)
参考答案一、选择题(每小题3分,共30分)1、D【解析】
根据二次根式的计算法则对各个选项一一进行计算即可判断出答案.【详解】A.不是同类二次根式,不能合并,故A错误;B.,故B错误;C.,故C错误;D.故D正确.故选D.【点睛】本题考查了二次根式的运算.熟练应用二次根式的计算法则进行正确计算是解题的关键.2、B【解析】
把x=1代入一元二次方程ax2-bx-1=0即可得到a-b的值.【详解】解:把x=1代入一元二次方程ax2-bx-1=0得a-b-1=0,
所以a-b=1.
故选:B.【点睛】此题考查一元二次方程的解,解题关键在于掌握能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.3、B【解析】
根据正方形的判定逐项判断即可.【详解】A、对角线互相垂直的矩形是正方形,此项不符题意B、对角线相等的矩形不一定是正方形,此项符合题意C、对角线互相垂直且相等的平行四边形是正方形,此项不符题意D、对角线相等的菱形是正方形,此项不符题意故选:B.【点睛】本题考查了正方形的判定,熟记正方形的判定方法是解题关键.4、C【解析】
根据选项逐个判断是否正确即可.【详解】A错误,应该是要两条邻边相等的平行四边形是菱形.B错误,直角梯形有一个角是直角,但不是矩形.C正确.D错误,因为等腰梯形也有两条对角线相等且垂直.故选C.【点睛】本题主要考查命题是否正确,关键在于举出反例.5、B【解析】
利用相似三角形的判定与性质得出,求出EC即可.【详解】∵DE∥BC,∴△ADE∽△ABC.∴,即解得:EC=1.故选B.6、C【解析】
直接利用二次根式的加减运算法则以及同底数幂的乘除运算法则和合并同类项运算法则分别判断得出答案.【详解】A、(2a2)•(3a3)=6a5,故此选项错误;B、6a2b÷2a=3ab,故此选项错误;C、3a2﹣2a2=a2,正确;D、+,无法计算,故此选项错误;故选:C.【点睛】此题主要考查了二次根式的加减运算以及同底数幂的乘除运算和合并同类项运算,正确掌握相关运算法则是解题关键.7、D【解析】
求出AB+BC的值,其2倍便是平行四边形的周长.【详解】解:的周长为13,,,则平行四边形周长为,故选:.【点睛】本题主要考查了平行四边形的性质,解题的规律是求解平行四边形的周长就是求解两邻边和的2倍.8、B【解析】
根据图象在坐标平面内的位置,确定k,b的取值范围,从而求解.【详解】∵一次函数y=kx+b的图象,y随x的增大而增大,∴k>1,∵直线与y轴负半轴相交,∴b<1.故选:B.【点睛】本题主要考查一次函数的解析式的系数的几何意义,掌握一次函数的解析式的系数与直线在坐标系中的位置关系,是解题的关键.9、B【解析】
根据所给的程序,用所给数的平方减去3,再把所得的结果和1比较大小,判断出需不需要继续计算即可.【详解】解:当x=﹣1时,(﹣1)1﹣3=1;当x=1时,11﹣3=﹣1;∵﹣1<1,∴当输入x=﹣1时,输出结果为﹣1.故选:B.【点睛】本题考查了程序式的基本算法及代数式的的计算,读懂题中的算法是解题的关键.10、B【解析】
根据三角形内角和定理求得∠B的度数,再根据平行四边形的性质即可求得答案.【详解】在△ABC中,∠BAC=78°,∠ACB=38°,∴∠B=(180-78-38)o=64°,∵四边形ABCD是平行四边形,∴∠D=∠B=64°.故选:B.【点睛】考查了平行四边形的性质,利用平行四边形对角相等得出答案是解题的关键.二、填空题(每小题3分,共24分)11、AD=AB【解析】
根据菱形的判定定理即可求解.【详解】∵四边形ABCD为平行四边形,所以可以添加AD=AB,即可判定是菱形,故填:AD=AB.【点睛】此题主要考查菱形的判定,解题的关键是熟知菱形的判定定理.12、【解析】由图可得,正方形ABCD的面积=,正方形ABCD的面积=,∴.故答案为:.13、1【解析】
先求出这个多边形的每一个外角的度数,再用360°除以外角的度数即可得到边数.【详解】∵多边形的每一个内角都等于150°,∴多边形的每一个外角都等于180°﹣150°=30°,∴边数n=360°÷30°=1.故答案为:1.【点睛】本题考查了多边形的内角与外角的关系,求出每一个外角的度数是解答本题的关键.14、【解析】
作CH⊥AE于H,如图,根据平行线的性质得∠ABC+∠BCH=180°,∠DCH+∠CHE=180°,则∠DCH=90°,于是可得到∠ABC+∠BCD=270°.【详解】解:作CH⊥AE于H,如图,
∵AB⊥AE,CH⊥AE,
∴AB∥CH,
∴∠ABC+∠BCH=180°,
∵CD∥AE,
∴∠DCH+∠CHE=180°,
而∠CHE=90°,
∴∠DCH=90°,
∴∠ABC+∠BCD=180°+90°=270°.
故答案为270°.【点睛】本题考查了平行线性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.15、【解析】
设BG=x,则BE=x,即BC=x,则正方形FBGE与正方形ABCD的相似比=BG:BC=x:x=:2.【详解】设BG=x,则BE=x,∵BE=BC,∴BC=x,则正方形FBGE与正方形ABCD的相似比=BG:BC=x:x=:2.故答案为:.【点睛】本题主要考查正方形的性质,图形相似的的性质.解此题的关键在于根据正方形的性质得到相关边长的比.16、1【解析】
根据关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数可得m=5,n=-3,代入可得到m+n的值.【详解】解:∵点A(m,n),B(5,3)关于x轴对称,
∴m=5,n=-3,
即:m+n=1.
故答案为:1.【点睛】此题主要考查了关于x轴对称点的坐标特点,关键是掌握坐标变化规律:(1)关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数;(1)关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变.17、【解析】
根据二次根式的性质,被开方数大于或等于0,可以求出x的范围.【详解】根据题意得:,解得:.故答案是:.【点睛】函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.18、【解析】
根据二次根式被开方数必须是非负数的条件可得关于x的不等式,解不等式即可得.【详解】由题意得:2-x≥0,解得:x≤2,故答案为x≤2.三、解答题(共66分)19、(1)C(0,3m);(2)①证明见解析;②8m+;(3)或【解析】
(1)连接MC,先得出MC=5m,MO=4m,再由勾股定理得出OC=3m,即可得出点C的坐标;(2)①由弦切角定理得∠ECF=∠EAC,再证出FC=BC,再证出△CEF≌△COB,可得到EF=OB;②由△CEF≌△COB可得AE=AO,用勾股定理求出AC、BC.再用等量代换计算可得到AFC的周长(3)先用三角函数求出OD,再用勾股定理列出方程,得到m=1,从而求得的面积,再求出k值。再根据二次函数的性质列出方程求得a的值,从而问题得解。【详解】解:(1)连接MC,∵A9m,0、Bm,0m0,∴AB=10m,MC=5m,MO=4m由勾股定理得解得:OC=3m∴C(0,3m)(2)①证明:连接CF,∵CE是⊙M的切线,∴∠ECF=∠EAC,∵AB是直径,∴∠ACB=90°∴∠CAB=∠BCO,∵A,F,C,B共圆,∴∠EFC=∠OBC,又∵AE⊥CE∴∠CEF=∠BOC=90°,∴∠ECF=∠BCO,∴∠EAC=∠CAB∴CF=CB在△CEF和△COB中∴△CEF≌△COB∴EF=BO②∵△CEF≌△COB∴CE=CO,∴△ACE≌△ACO(HL)∴AE=AO∵AFC的周长=AF+FC+AC=AE-EF+FC+AC=AO-BO+FC+AC=9m-m++=8m+(3)∵CD是⊙M的切线,易证∠OCD=∠OMC∴sin∠OMC=sin∠OCD即得在Rt△OCD中,而CO=3m∴m=1∴AF=8,CE=3,∴二次函数的图象过原点,则c=0得对称轴为直线当时,即分两种情况,a<0时,由函数的性质可知,时,y=a,∴解得∴此二次函数的解析式为:A>0时,由函数的性质可知,x=4时,y=a,∴a=16a-4解得∴此二次函数的解析式为:综上,此二次函数的解析式为:或故答案为:或【点睛】本题是一个难度较大的综合题,考查了二次函数的性质,圆的切线,圆周角定理,也考查了利用三角函数解直角三角形的知识,综合性强,需要认真理解题意,灵活运用所学知识分析和解题。20、(1)54;(2)不是直角三角形,理由见解析.【解析】
(1)在和中,利用勾股定理分别求得AB与AC的长即可;(2)利用勾股定理的逆定理进行判断即可.【详解】解:,.在和中,根据勾股定理得,,又,,,,;不是直角三角形.理由:,,不是直角三角形.【点睛】本题主要考查勾股定理及其逆定理,解此题的关键在于熟练掌握其知识点.21、(1);(2).【解析】
(1)根据所给算式写出结论即可;(2)根据(1)中规律把括号内变形,然后合并同类二次根式,再根据平方差公式计算.【详解】解:(1)∵,,,,∴;原式.【点睛】本题考查了二次根式的混合运算,根据所给算式总结出是解答本题的关键.22、(1)详见解析;(2)2【解析】
(1)根据对角线互相垂直的平行四边形是菱形证明即可;(2)由菱形的性质得到AO=CO,即可得到OF为△ABC的中位线,从的得到FO∥AB,FO的长,进而得到A∠BAC=90°,EF的长.在Rt△BAC中,由勾股定理得出AC的长,根据菱形面积等于对角线乘积的一半即可得出结论.【详解】(1)证明:如图,∵四边形ABCD是平行四边形,∴AD=BC,且AD∥BC.∵DE=BF∴AE=CF,且AE∥CF,∴四边形AECF为平行四边形.∵AC⊥EF,∴四边形AECF为菱形.(2)∵四边形AECF是菱形,∴AO=CO.∵F为BC中点,∴FO∥AB,FO=12AB=3,∴∠BAC=∠FOC=90°,EF=1∵AB=1,BC=10,∴AC=8,∴S菱形AECF=2.【点睛】本题考查了平行四边形的性质、菱形的判定及性质,三角形中位线的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.23、(1);(2).【解析】
(1)选逐项化简,再合并同类项或同类二次根式即可;(2)先计算二次根式的乘法和除法,再合并同类项即可.【详解】(1)=4--4+2=;(2)=a+-a=.【点睛】本题考查了二次根式的混合运算,熟练掌握二次根式的性质及运算法则是解答本题的关键.24、(1)点横坐标为2;(2);(3);(4)或.【解析】
(1)联立两直线方程即可得出答案;(2)先根据图像求出k的取值范围,再解不等式组即可得出答案;(3)先求出点关于直线的对称点为的坐标,连接交直线于点,此时最小,根据将和P的坐标
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024规范化房产租赁中介服务协议
- 2024年商业楼宇物业委托管理协议
- 车辆保养与维修服务协议模板2024
- 董事任用协议:2024年企业专用
- 多功能的电梯综合维修服务协议
- 2024年限额小型建筑工程协议范本
- 2024年工程用重型机械租赁服务协议
- 2024个人销售代理业务协议范例
- 2024年特定债务转让三方协议模板
- 2024高强度纸箱销售协议样本
- 上交叉与下交叉综合征(课堂PPT)
- 铜仁市房地产市场调查分析报告专业课件
- 中南大学湘雅医院亚专科管理办法(试行)
- 船舶制造企业各部门职责
- 客房物品赔偿价目表修订版
- 小学低段主题情景中数量关系教学实践探讨
- 《数学课前三分钟》PPT课件.ppt
- 变更通知单(ECN) 模板
- 不同截面钢牛腿设计计算(excel)
- 公安笔录模板之询问笔录字头(证人治安案件)
- 已解密_彩盒性能技术规范
评论
0/150
提交评论