版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
福建省厦门市名校2024届八年级下册数学期末检测模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每题4分,共48分)1.如图,已知△ACD∽△ADB,AC=4,AD=2,则AB的长为A.1 B.2C.3 D.42.如图,在正方形中,点是的中点,点是的中点,与相交于点,设.得到以下结论:①;②;③则上述结论正确的是()A.①② B.①③C.②③ D.①②③3.下列各图中,∠1>∠2的是()A. B. C. D.4.在2014年的体育中考中,某校6名学生的体育成绩统计如图,则这组数据的众数、中位数、方差依次是()A.18,18,1 B.18,17.5,3 C.18,18,3 D.18,17.5,15.以下运算错误的是()A. B.C. D.6.若一个多边形的内角和是900°,则这个多边形的边数是()A.5B.6C.7D.87.下列命题中,是真命题的是()A.对角线互相垂直的四边形是菱形 B.对角形相等的四边形是矩形C.顺次连结平行四边形各边中点所得四边形是平行四边形 D.一组邻边相等的平行四边形是正方形8.抛物线()的部分图象如图所示,与轴的一个交点坐标为,抛物线的对称轴是,下列结论是:①;②;③方程有两个不相等的实数根;④;⑤若点在该抛物线上,则,其中正确的个数有()A.1个 B.2个 C.3个 D.4个9.如图,某人从点A出发,前进8m后向右转60°,再前进8m后又向右转60°,按照这样的方式一直走下去,当他第一次回到出发点A时,共走了()A.24m B.32m C.40m D.48m10.如图,正方形ABCD的面积为1,则以相邻两边中点连线EF为边正方形EFGH的周长为()A. B. C. D.11.在平面直角坐标系中,点A的坐标为(﹣3,4),那么下列说法正确的是()A.点A与点B(﹣3,﹣4)关于y轴对称B.点A与点C(3,﹣4)关于x轴对称C.点A与点E(﹣3,4)关于第二象限的平分线对称D.点A与点F(3,﹣4)关于原点对称12.如图,有一块菱形纸片ABCD,沿高DE剪下后拼成一个矩形,矩形的相邻两边DC和DE的长分别是5,1.则EB的长是()A.0.5 B.1 C.1.5 D.2二、填空题(每题4分,共24分)13.如图,AD∥BC,∠ABC的角平分线BP与∠BAD的角平分线AP相交于点P,作PE⊥AB于点E.若PE=2,则两平行线AD与BC间的距离为_____.14.分解因式:=________.15.如图,将一副直角三角板如图所示放置,使含30°角的三角板的一条直角边和含45°的三角板的一条直角边重合,则∠1的度数为______.16.如图,在中,,底边在轴正半轴上,点在第一象限,延长交轴负半轴于点,延长到点,使,若双曲线经过点,则的面积为________.17.对于实数x,我们[x]表示不大于x的最大整数,例如[1.2]=1,[3]=3,[﹣2.5]=﹣3,若[]=5,则x的取值范围是______.18.等边三角形中,两条中线所夹的锐角的度数为_____.三、解答题(共78分)19.(8分)某小区积极创建环保示范社区,决定在小区内安装垃圾分类的温馨提示牌和垃圾箱,已知温馨提示牌的单价为每个30元,垃圾箱的单价为每个90元,共需购买温馨提示牌和垃圾箱共100个.(1)若规定温馨提示牌和垃圾箱的个数之比为1:4,求所需的购买费用;(2)若该小区至多安放48个温馨提示牌,且费用不超过6300元,请列举所有购买方案,并说明理由.20.(8分)某文化用品店用2000元购进一批学生书包,面市后发现供不应求,商店又购进第二批同样的书包,所购数量是第一批购进数量的3倍,但单价贵了4元,结果第二批用了6300元。求第一批书包的单价。21.(8分)2018长春国际马拉松赛于2018年5月27日在长春市举行,其中10公里跑起点是长春体育中心,终点是卫星广场.比赛当天赛道上距离起点5km处设置一个饮料站,距离起点7.5km处设置一个食品补给站.小明报名参加了10公里跑项目.为了更好的完成比赛,小明在比赛前进行了一次模拟跑,从起点出发,沿赛道跑向终点,小明匀速跑完前半程后,将速度提高了,继续匀速跑完后半程.小明与终点之间的路程与时间之间的函数图象如图所示,根据图中信息,完成以下问题.(1公里=1千米)(1)小明从起点匀速跑到饮料站的速度为_______,小明跑完全程所用时间为________;(2)求小明从饮料站跑到终点的过程中与之间的函数关系式;(3)求小明从起点跑到食品补给站所用时间.22.(10分)为了更好治理河流水质,保护环境,某市治污公司决定购买10台污水处理设备,现有A,B两种型号的设备,其中每台的价格,月处理污水量如表:
A型
B型
价格(万元/台)
a
b
处理污水量(吨/月)
220
180经调查:购买一台A型设备比购买一台B型设备多3万元,购买2台A型设备比购买3台B型设备少3万元.(1)求a,b的值;(2)经预算:市治污公司购买污水处理设备的资金不超过100万元,你认为该公司有哪几种购买方案;(3)在(2)问的条件下,若每月要求处理的污水量不低于1880吨,为了节约资金,请你为治污公司设计一种最省钱的购买方案.23.(10分)已知:如图,在▱ABCD中,对角线AC,BD交于点O,AB⊥AC,AB=1,BC=.(1)求平行四边形ABCD的面积S□ABCD;(2)求对角线BD的长.24.(10分)如图,在平面直角坐标系内,已知△ABC的三个顶点坐标分别为A(1,3)、B(4,2)、C(3,4).(1)将△ABC沿水平方向向左平移4个单位得△A1B1C1,请画出△A1B1C1;(2)画出△ABC关于原点O成中心对称的△A2B2C2;(3)若△A1B1C1与△A2B2C2关于点P成中心对称,则点P的坐标是25.(12分)如图,△ABC是等腰直角三角形,延长BC至E使BE=BA,过点B作BD⊥AE于点D,BD与AC交于点F,连接EF.(1)求证:BF=2AD;(2)若CE=,求AC的长.26.已知关于x的方程x2﹣kx+k2+n=1有两个不相等的实数根x1、x2,且(2x1+x2)2﹣8(2x1+x2)+15=1.(1)求证:n<1;(2)试用k的代数式表示x1;(3)当n=﹣3时,求k的值.
参考答案一、选择题(每题4分,共48分)1、A【解析】
由△ACD∽△ADB,根据相似三角形的对应边成比例,可得AC:AD=AD:AB,又由AC=4,AD=2,即可求得AB的长.【详解】∵△ACD∽△ADB,∴,∴AB==1,故选A.【点睛】考查相似三角形的性质,相似三角形对应边成比例.2、D【解析】
由正方形的性质和全等三角形的判定与性质,直角三角形的性质进行推理即可得出结论.【详解】解:如图,(1)所以①成立(2)如图延长交延长线于点,则:∴为直角三角形斜边上的中线,是斜边的一半,即所以②成立(3)∵∴∵∴所以③成立故选:D【点睛】本题考查的正方形的性质,直角三角形的性质以及全等三角形的判定和性质,解答此题的关键是熟练掌握性质和定理.3、D【解析】
根据等边对等角,对顶角相等,平行线的性质,三角形的一个外角大于任何一个与它不相邻的内角对各选项分析判断后利用排除法求解.【详解】解:A、∵AB=AC,∴∠1=∠2,故本选项错误;B、∠1=∠2(对顶角相等),故本选项错误;C、根据对顶角相等,∠1=∠3,∵a∥b,∴∠2=∠3,∴∠1=∠2,故本选项错误;D、根据三角形的外角性质,∠1>∠2,故本选项正确.故选D.4、A【解析】
根据众数、中位数的定义和方差公式分别进行解答即可.【详解】这组数据18出现的次数最多,出现了3次,则这组数据的众数是18;把这组数据从小到大排列,最中间两个数的平均数是(18+18)÷2=18,则中位数是18;这组数据的平均数是:(17×2+18×3+20)÷6=18,则方差是:[2×(17﹣18)2+3×(18﹣18)2+(20﹣18)2]=1.故选A.【点睛】本题考查了众数、中位数和方差,众数是一组数据中出现次数最多的数;中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);一般地设n个数据,x1,x2,…xn的平均数为,则方差S2[(x1)2+(x2)2+…+(xn)2].5、B【解析】A.,正确;B.=5,则原计算错误;C.,正确;D.,正确,故选B.6、C【解析】
根据多边形的内角和公式(n﹣2)•180°,列式求解即可.【详解】设这个多边形是n边形,根据题意得,(n﹣2)•180°=900°,解得n=1.故选:C.【点睛】本题主要考查了多边形的内角和公式,熟记公式是解题的关键.7、C【解析】
根据菱形、矩形、平行四边形、正方形的判定定理逐项判断即可.【详解】解:A.对角线互相垂直的平行四边形是菱形,此选项不符合题意;B.对角形相等的平行四边形是矩形,此选项不符合题意;C.顺次连结平行四边形各边中点所得四边形是平行四边形,此选项符合题意;D.一组邻边相等的矩形是正方形,此选项不符合题意;故选:C.【点睛】本题考查的知识点是菱形、矩形、平行四边形、正方形的判定定理,熟记菱形、矩形、平行四边形、正方形的判定定理内容是解此题的关键.8、D【解析】
根据二次函数的对称性补全图像,再根据二次函数的性质即可求解.【详解】如图,∵与轴的一个交点坐标为,抛物线的对称轴是,实验求出二次函数与x轴的另一个交点为(-2,0)故可补全图像如下,由图可知a<0,c>0,对称轴x=1,故b>0,∴,①错误,②对称轴x=1,故x=-,∴,正确;③如图,作y=2图像,与函数有两个交点,∴方程有两个不相等的实数根,正确;④∵x=-2时,y=0,即,正确;⑤∵抛物线的对称轴为x=1,故点在该抛物线上,则,正确;故选D【点睛】此题主要考查二次函数的图像,解题的关键是熟知二次函数的对称性.9、D【解析】
从A点出发,前进8m后向右转60°,再前进8m后又向右转60°,…,这样一直走下去,他第一次回到出发点A时,所走路径为正多边形,根据正多边形的外角和为360°,判断多边形的边数,再求路程.【详解】解:依题意可知,某人所走路径为正多边形,设这个正多边形的边数为n,则60n=360,解得n=6,故他第一次回到出发点A时,共走了:8×6=48(m).故选:D.【点睛】本题考查了多边形的外角和,正多边形的判定与性质.关键是根据每一个外角判断多边形的边数.10、B【解析】
由正方形的性质和已知条件得出BC=CD=,∠BCD=90°,CE=CF=,得出△CEF是等腰直角三角形,由等腰直角三角形的性质得出EF的长,即可得出正方形EFGH的周长.【详解】解:∵正方形ABCD的面积为1,∴BC=CD=,∠BCD=90°.∵E、F分别是BC、CD的中点,∴CE=BC=,CF=CD=,∴CE=CF,∴△CEF是等腰直角三角形,∴EF=CE=,∴正方形EFGH的周长=4EF=4×=.故选:B.【点睛】本题考查了正方形的性质、等腰直角三角形的判定与性质;熟练掌握正方形的性质,由等腰直角三角形的性质求出EF的长是解决问题的关键.11、D【解析】
根据关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数;关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变;关于原点对称的点的坐标特点:两个点关于原点对称时,它们的坐标符号相反;关于第二象限角平分线的对称的两点坐标的关系,纵横坐标交换位置且变为相反数可得答案.【详解】解:A、点A的坐标为(-3,4),∴则点A与点B(-3,-4)关于x轴对称,故此选项错误;
B、点A的坐标为(-3,4),∴点A与点C(3,-4)关于原点对称,故此选项错误;
C、点A的坐标为(-3,4),∴点A与点E(-3,4)重合,故此选项错误;
D、点A的坐标为(-3,4),∴点A与点F(3,-4)关于原点对称,故此选项正确;
故选D.【点睛】此题主要考查了关于xy轴对称点的坐标点的规律,以及关于原点对称的点的坐标特点,关键是熟练掌握点的变化规律,不要混淆.12、B【解析】
直接利用菱形的性质得出AD的长,再利用勾股定理得出AE的长,进而利用平移的性质得出答案.【详解】解:∵有一块菱形纸片ABCD,DC=5,∴AD=BC=5,∵DE=2,∠DEA=90°,∴AE=4,则BE=5﹣4=2.故选:B.【点睛】此题主要考查了图形的剪拼以及菱形的性质,正确得出AE的长是解题关键.二、填空题(每题4分,共24分)13、1【解析】根据角平分线的性质以及平行线的性质即可得出PM=PE=2,PE=PN=2,即可得出答案.解答:解:过点P作MN⊥AD,∵AD∥BC,∠ABC的角平分线BP与∠BAD的角平分线AP相交于点P,PE⊥AB于点E,∴AP⊥BP,PN⊥BC,∴PM=PE=2,PE=PN=2,∴MN=2+2=1.故答案为1.14、【解析】
利用提公因式完全平方公式分解因式.【详解】故答案为:【点睛】利用提公因式、平方差公式、完全平方公式分解因式.15、75°【解析】
根据三角形内角和定理求出∠DMC,求出∠AMF,根据三角形外角性质得出∠1=∠A+∠AMF,代入求出即可.【详解】∵∠ACB=90°,
∴∠MCD=90°,
∵∠D=60°,
∴∠DMC=30°,
∴∠AMF=∠DMC=30°,
∵∠A=45°,
∴∠1=∠A+∠AMF=45°+30°=75°,
故选:C.【点睛】本题考查了三角形内角和定理,三角形的外角性质的应用,解此题的关键是求出∠AMF的度数.16、【解析】
连接BE,先根据题意证明BE⊥BC,进而判定△CBE∽△BOD,根据相似比得出BC×OD=OB×BE的值即为|k|的值,再由三角形面积公式即可求解.【详解】解:如图,连接,∵等腰三角形中,,∴,∵,∴,∴,又∵,∴,即,∴,又∵,∴,∴,即,又∵双曲线的图象过点,∴,∴的面积为.故答案为:.【点睛】此题主要考查了反比例函数比例系数k的几何意义,解题时注意:过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|,体现了数形结合的思想.17、46≤x<1【解析】分析:根据题意得出5≤<6,进而求出x的取值范围,进而得出答案.详解:∵[x]表示不大于x的最大整数,[]=5,∴5≤<6解得:46≤x<1.故答案为46≤x<1.点睛:本题主要考查了不等式组的解法,得出x的取值范围是解题的关键.18、60°【解析】
如图,等边三角形ABC中,根据等边三角形的性质知,底边上的高与底边上的中线,顶角的平分线重合,所以∠1=∠2=∠ABC=30°,再根据三角形外角的性质即可得出结论.【详解】如图,∵等边三角形ABC,AD、BE分别是中线,∴AD、BE分别是角平分线,∴∠1=∠2=∠ABC=30°,∴∠3=∠1+∠2=60°.【点睛】本题考查的是等边三角形的性质,熟知等边三角形三线合一的性质是解答此题的关键.三、解答题(共78分)19、(1)7800元;(2)购买方案为:温馨提示牌和垃圾箱个数分别为45,55;46,54;47,53;48,1.【解析】
(1)购买温馨提示牌的费用+购买垃圾箱的费用即为所需的购买费用(2)温馨提示牌为x个,则垃圾箱为(100-x)个,根据该小区至多安放48个温馨提示牌,且费用不超过6300元,建立不等式组,根据为整数可得到4种购买方案.【详解】(1)(元)答:所需的购买费用为7800元.(2)设温馨提示牌为x个,则垃圾箱为(100-x)个,由题意得:,解得:∵为整数∴∴购买方案为:温馨提示牌和垃圾箱个数分别为45,55;46,54;47,53;48,1.【点睛】本题主要考查一元一次不等式组的应用以及方案问题,读懂题目,找出题目中的不等关系列出不等式是解题的关键.20、80元【解析】
首先设购进第一批书包的单价是x元,则购进第二批书包的单价是(x+4)元,根据题意可得等量关系:第一批购进的数量×3=第二批购进的数量,由等量关系可得方程,解方程即可.【详解】设第一批书包的单价是每个元,这第二批书包的单价是每个元,根据题意得解这个方程得经检验时所列方程的解.答:第一批书包的单价是每个80元.【点睛】此题主要考查了分式方程的应用,关键是弄清题意,设出未知数,列出方程.列分式方程解应用题的一般步骤:设、列、解、验、答.必须严格按照这5步进行做题,规范解题步骤,另外还要注意完整性.21、(1),1.2;(2)S=﹣10t+12(0.7≤t≤1.2);(3)0.95【解析】
(1)根据图象可知小明从起点匀速跑到饮料站用时0.7小时,根据“速度=路程÷时间”即可解答;(2)根据题意和函数图象中的数据可以求得小明从饮料站跑到终点的过程中S与t之间的函数表达式;(3)根据题意,可以列出关于a的不等式,从而可以求得a的取值范围,本题得以解决.【详解】解:(1)小明从起点匀速跑到饮料站的速度为:km/h,小明跑完全程所用时间为:(小时);故答案为:;1.2;(2)设明张从饮料站跑到终点的过程中S与t之间的函数表达式为S=kt+b,,解得,即小明从饮料站跑到终点的过程中S与t之间的函数表达式为S=﹣10t+12(0.7≤t≤1.2);(3)10﹣7.5=2.5,∴将S=2.5代入S=﹣10t+12,得2.5=﹣10t+12,得t=0.95,答:小明从起点跑到食品补给站所用的时间为0.95小时.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,求出相应的函数解析式,利用一次函数的性质和数形结合的思想解答.22、(1);(2)有四种购买方案:①A型设备0台,B型设备10台;②A型设备1台,B型设备9台;③A型设备2台,B型设备8台;④A型设备1台,B型设备7台;(1)为了节约资金,应选购A型设备2台,B型设备8台.【解析】
(1)购买A型的价格是a万元,购买B型的设备b万元,根据购买一台A型号设备比购买一台B型号设备多1万元,购买2台A型设备比购买1台B型号设备少1万元,可列方程组求解.(2)设购买A型号设备x台,则B型为(10-x)台,根据使治污公司购买污水处理设备的资金不超过100万元,进而得出不等式.(1)利用每月要求处理污水量不低于1880吨,可列不等式求解.【详解】解:(1)根据题意得:,解得:;(2)设购买污水处理设备A型设备x台,B型设备(10-x)台,根据题意得,12x+9(10-x)≤100,∴x≤,∵x取非负整数,∴x=0,1,2,1∴10-x=10,9,8,7∴有四种购买方案:①A型设备0台,B型设备10台;②A型设备1台,B型设备9台;③A型设备2台,B型设备8台.④A型设备1台,B型设备7台;(1)由题意:220x+180(10-x)≥1880,∴x≥2,又∵x≤,∴x为2,1.当x=2时,购买资金为12×2+9×8=96(万元),当x=1时,购买资金为12×1+9×7=99(万元),∴为了节约资金,应选购A型设备2台,B型设备8台.【点睛】本题考查了一元一次不等式的应用,根据购买一台A型号设备比购买一台B型号设备多1万元,购买2台A型设备比购买1台B型号设备少1万元和根据使治污公司购买污水处理设备的资金不超过100万元,若每月要求处理洋澜湖的污水量不低于1880吨,等量关系和不等量关系分别列出方程组和不等式求解.23、(1)S□ABCD=2,(2)BD=2【解析】
(1)先求出,根据平行四边形的面积=底×高,进行计算即可.(2)在中求出,继而可得的长.【详解】(1)∵AB⊥AC,∴∠ABC=90°在中,则(2)∵四边形ABCD是平行四边形,∴AO=OC,BO=OD,∴AO=1,在中,24、(1)见解析(2)见解析(3)(﹣2,0)【解析】
(1)依据△ABC沿水平方向向左平移4个单位得△A1B1C1,即可画出△A1B1C1;(2)依据中心对称的性质,即可得到△ABC关于原点O成中心对称的△A2B2C2;(3)连接两对对应点,其交点即为对称中心.【详解】解:如图:(1)如图,△A1B1C1即为所求;(2)如图,△A2B2C2即为所求;(3)如图,点P的坐标是(﹣2,0).故答案为:(﹣2,0).【点睛】本题考查的是作图一旋转变换、平移变换,根据题意作出各点在几何变换下的对应点是解答此题的关键.25、(1)见解析;(2)2+【解析】
(1)由△ABC是等腰直角三角形,得到AC=BC,∠FCB=∠ECA=90°,由于AC⊥BE,BD⊥AE,根据垂直的定义得到∠CBF+∠CFB=90°,∠DAF+∠AFD=90°,由于∠CFB=∠AFD,于是得到∠CBF=∠CAE,证得△BCF≌△ACE,得出AE=BF,由于BE=BA,BD⊥AE,于是得到AD=ED,即AE=2AD,即可得到结论;(2)由(1)知△BCF≌△ACE,推出CF=CE=,在Rt△CEF中,EF==2,由于BD⊥AE,AD
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 【正版授权】 ISO 20679:2025 EN Ships and marine technology - Marine environment protection - Testing of ship biofouling in-water cleaning systems
- 我的家乡叙事课程设计
- 弦乐小夜曲课程设计
- 中西医执业医师模拟试卷16
- 矿井灌浆设计课程设计
- 站姿坐姿课程设计
- 花艺烘焙课程设计
- 药品验收入门课程设计
- 互联网行业安全管理实践
- 领导班子与教学院校协调计划
- 职业生涯规划班会课教案设计
- 微观经济学(对外经济贸易大学)智慧树知到期末考试答案2024年
- (正式版)HGT 6277-2024 甲醇制烯烃(MTO)级甲醇
- 注射用更昔洛韦的临床疗效研究
- 2023年1月广东省自考00634广告策划试题及答案含解析
- 2024年青海西部机场集团青海机场有限公司招聘笔试参考题库含答案解析
- 中国绿色建筑现状与未来展望
- 河南省洛阳市2023-2024学年高二上学期期末考试英语试题(解析版)
- 超声检查医疗纠纷的防范培训课件
- 采购管理的流程与原则
- 2022-2023学年山东省东营市东营区七年级(上)期末历史试卷(五四学制)(附答案详解)
评论
0/150
提交评论