广东省肇庆市名校2024年数学八年级下册期末经典模拟试题含解析_第1页
广东省肇庆市名校2024年数学八年级下册期末经典模拟试题含解析_第2页
广东省肇庆市名校2024年数学八年级下册期末经典模拟试题含解析_第3页
广东省肇庆市名校2024年数学八年级下册期末经典模拟试题含解析_第4页
广东省肇庆市名校2024年数学八年级下册期末经典模拟试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

广东省肇庆市名校2024年数学八年级下册期末经典模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.以下列各组数为三角形的边长,能构成直角三角形的是()A.1,2,3 B.1,1, C.2,4,5 D.6,7,82.若一组数据3、4、5、x、6、7的平均数是5,则x的值是()A.4 B.5 C.6 D.73.在一个不透明的布袋中,有红色、黑色、白色球共40个,它们除颜色外其他完全相同,小明通过多次摸球试验后发现其中摸到红色球、黑色球的频率稳定在和,则布袋中白色球的个数可能是()A.24 B.18 C.16 D.64.直线y=x+1与y=–2x–4交点在()A.第一象限 B.第二象限 C.第三象限 D.第四象限5.在平面直角坐标系中,点A的坐标是(3,-4),点B的坐标是(1,2),将线段AB平移后得到线段A'B'.若点A对应点A'的坐标是(5,2),则点B'的坐标是()A.(3,6) B.(3,7) C.(3,8) D.(6,4)6.小明在画函数(>0)的图象时,首先进行列表,下表是小明所列的表格,由于不认真列错了一个不在该函数图象上的点,这个点是A. B. C. D.7.如果一个多边形的每一个外角都是60°,则这个多边形的边数是()A.3 B.4 C.5 D.68.如图,直线y=-x+2与x轴交于点A,则点A的坐标是()A.(2,0) B.(0,2) C.(1,1) D.(2,2)9.已知平行四边形ABCD,AC、BD是它的两条对角线,那么下列条件中,能判断这个平行四边形为矩形的是()A.∠BAC=∠DCA B.∠BAC=∠DAC C.∠BAC=∠ABD D.∠BAC=∠ADB10.若顺次连接四边形ABCD各边的中点所得四边形是菱形.则四边形ABCD一定是()A.菱形 B.对角线互相垂直的四边形C.矩形 D.对角线相等的四边形11.如图,延长矩形ABCD的边BC至点E,使CEBD,连接AE,若∠ADB40,则∠E的度数是()A.20 B.25 C.30 D.3512.质量检查员随机抽取甲、乙、丙、丁四台机器生产的20个乒乓球的直径(规格是直径4cm),整理后的平均数和方差如下表,那么这四台机器生产的乒乓球既标准又稳定的是()机器甲乙丙丁平均数(单位:cm)4.013.983.994.02方差0.032.41.10.3A.甲 B.乙 C.丙 D.丁二、填空题(每题4分,共24分)13.把两个同样大小的含45°角的三角尺按如图所示的方式放置,其中一个三角尺的锐角顶点与另一个的直角顶点重合于点A,且另三个锐角顶点B,C,D在同一直线上.若AB=,则CD=_____.14.已知一组数据为1,2,3,4,5,则这组数据的方差为_____.15.如果一个平行四边形一个内角的平分线分它的一边为1∶2的两部分,那么称这样的平行四边形为“协调平行四边形”,称该边为“协调边”.当“协调边”为3时,这个平行四边形的周长为_________.16.如图,在菱形ABCD中,∠A=70º,E,F分别是边AB和BC的中点,EP⊥CD于P,则∠FPC的度数为___________.17.菱形的面积是16,一条对角线长为4,则另一条对角线的长为______.18.已知一个菱形的两条对角线的长分别为10和24,则这个菱形的周长为.三、解答题(共78分)19.(8分)化简:.20.(8分)如图,在中,点是边的中点,设(1)试用向量表示向量,则;(2)在图中求作:.(保留作图痕迹,不要求写作法,但要写出结果)21.(8分)某公司为了了解员工每人所创年利润情况,公司从各部门抽取部分员工对每年所创年利润情况进行统计,并绘制如图所示的统计图.(1)求抽取员工总人数,并将图补充完整;(2)每人所创年利润的众数是________,每人所创年利润的中位数是________,平均数是________;(3)若每人创造年利润10万元及(含10万元)以上为优秀员工,在公司1200员工中有多少可以评为优秀员工?22.(10分)如图,四边形在平面直角坐标系的第一象限内,其四个顶点分别在反比例函数与的图象上,对角线于点,轴于点.(1)若,试求的值;(2)当,点是线段的中点时,试判断四边形的形状,并说明理由.(3)直线与轴相交于点.当四边形为正方形时,请求出的长度.23.(10分)如图,在△ABC中,点E是边AC上一点,线段BE垂直于∠BAC的平分线于点D,点M为边BC的中点,连接DM.(1)求证:DM=CE;(2)若AD=6,BD=8,DM=2,求AC的长.24.(10分)如图,正方形ABCD的边长为6,点E为BC的中点,点F在AB边上,,H在BC延长线上,且CH=AF,连接DF,DE,DH。(1)求证DF=DH;(2)求的度数并写出计算过程.25.(12分)从甲地到乙地有两条公路,一条是全长600km的普通公路,另一条是全长480km的高速公路,某客车在高速公路上行驶的平均速度比在普通公路上快45km/h,由高速公路从甲地到乙地所需的时间是由普通公路从甲地到乙地所需时间的一半,求该客车由高速公路从甲地到乙地所需的时间.26.甲、乙两公司为“见义勇为基金会”各捐款3000元.已知甲公司的人数比乙公司的人数多20%,乙公司比甲公司人均多捐20元.请你根据上述信息,就这两个公司的“人数”或“人均捐款”提出一个用分式方程解决的题,并写出解题过程.

参考答案一、选择题(每题4分,共48分)1、B【解析】

由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.【详解】A、12+22≠32,故不是直角三角形,故此选项错误;B、12+12=()2,故是直角三角形,故此选项正确;C、22+42≠52,故不是直角三角形,故此选项错误;D、62+72≠82,故不是直角三角形,故此选项错误.故选B.【点睛】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.2、B【解析】分析:根据平均数的定义计算即可;详解:由题意(3+4+5+x+6+7)=5,解得x=5,故选B.点睛:本题考查平均数的定义,解题的关键是根据平均数的定义构建方程解决问题3、C【解析】

先由频率之和为1计算出白球的频率,再由数据总数×频率=频数计算白球的个数.【详解】∵摸到红色球、黑色球的频率稳定在15%和45%,∴摸到白球的频率为1−15%−45%=40%,故口袋中白色球的个数可能是40×40%=16个.故选:C.【点睛】大量反复试验下频率稳定值即概率.关键是算出摸到白球的频率.4、C【解析】试题分析:直线y=x+1的图象经过一、二、三象限,y=–2x–4的图象经过二、三、四象限,所以两直线的交点在第三象限.故答案选C.考点:一次函数的图象.5、C【解析】

先由点A的平移结果判断出平移的方式,再根据平移的方式求出点B′的坐标即可.【详解】由点A(3,-4)对应点A′(5,2),知点A向右平移了2个单位,再向上平移了6个单位,所以,点B也是向右平移了2个单位,再向上平移了6个单位,B(1,2)平移后,变成:B′(3,8),故选C.【点睛】本题考查了平面直角坐标系中图形的平移规律.在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.6、D【解析】

首先将各选项代入计算看是否在直线上即可.【详解】A选项,当代入故在直线上.B选项,当代入故在直线上.C选项,当代入故在直线上.D选项,当代入故不在直线上.故选D.【点睛】本题主要考查直线上的点满足直线方程,是考试的基本知识,应当熟练掌握.7、D【解析】

解:由一个多边形的每一个外角都等于10°,且多边形的外角和等于310°,即求得这个多边形的边数为310÷10=1.故答案选D.考点:多边形外角与边数的关系.8、A【解析】

一次函数y=kx+b(k≠0,且k,b为常数)的图象是一条直线.令y=0,即可得到图象与x轴的交点.【详解】解:直线中,令.则.解得.∴.故选:A.【点睛】本题主要考查了一次函数图象上点的坐标特征,一次函数y=kx+b(k≠0,且k,b为常数)与x轴的交点坐标是(−,0),与y轴的交点坐标是(0,b).9、C【解析】

A、∠BAC=∠DCA,不能判断四边形ABCD是矩形;B、∠BAC=∠DAC,能判定四边形ABCD是菱形;不能判断四边形ABCD是矩形;C、∠BAC=∠ABD,能得出对角线相等,能判断四边形ABCD是矩形;D、∠BAC=∠ADB,不能判断四边形ABCD是矩形;故选C.10、D【解析】

根据三角形的中位线定理得到EH∥FG,EF=FG,EF=BD,要是四边形为菱形,得出EF=EH,即可得到答案.【详解】解:∵E,F,G,H分别是边AD,DC,CB,AB的中点,∴EH=AC,EH∥AC,FG=AC,FG∥AC,EF=BD,∴EH∥FG,EF=FG,∴四边形EFGH是平行四边形,假设AC=BD,∵EH=AC,EF=BD,则EF=EH,∴平行四边形EFGH是菱形,即只有具备AC=BD即可推出四边形是菱形,故选D.11、A【解析】

连接,由矩形性质可得、,知,而,可得度数.【详解】连接,四边形是矩形,,,且,,又,,,,,即.故选.【点睛】本题主要考查矩形性质,熟练掌握矩形对角线相等且互相平分、对边平行是解题关键.12、A【解析】

先比较出平均数,再根据方差的意义即可得出答案.【详解】解:由根据方差越小越稳定可知,甲的质量误差小,故选:A.【点睛】此题考查方差的意义.解题关键在于掌握方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.二、填空题(每题4分,共24分)13、【解析】

先利用等腰直角三角形的性质求出BC=2,BF=AF=1,再利用勾股定理求出DF,即可得出结论.【详解】如图,过点A作AF⊥BC于F,在Rt△ABC中,∠B=45°,∴BC=AB=2,BF=AF=AB=1,∵两个同样大小的含45°角的三角尺,∴AD=BC=2,在Rt△ADF中,根据勾股定理得,DF==∴CD=BF+DF-BC=1+-2=-1,故答案为-1.【点睛】此题主要考查了勾股定理,等腰直角三角形的性质,正确作出辅助线是解本题的关键.14、1.【解析】试题分析:先根据平均数的定义确定平均数,再根据方差公式进行计算即可求出答案.由平均数的公式得:(1+1+3+4+5)÷5=3,∴方差=[(1﹣3)1+(1﹣3)1+(3﹣3)1+(4﹣3)1+(5﹣3)1]÷5=1.考点:方差.15、8或1【解析】

解:如图所示:①当AE=1,DE=2时,∵四边形ABCD是平行四边形,∴BC=AD=3,AB=CD,AD∥BC,∴∠AEB=∠CBE,∵BE平分∠ABC,∴∠ABE=∠CBE,∴∠ABE=∠AEB,∴AB=AE=1,∴平行四边形ABCD的周长=2(AB+AD)=8;②当AE=2,DE=1时,同理得:AB=AE=2,∴平行四边形ABCD的周长=2(AB+AD)=1;故答案为8或1.16、35°【解析】

根据菱形的邻角互补求出∠B,再求出BE=BF,然后根据等腰三角形两底角相等求出∠BEF,再求出∠FEP,取AD的中点G,连接FG交EP于O,然后判断出FG垂直平分EP,再根据线段垂直平分线上的点到两端点的距离相等可得EF=FP,利用等边对等角求出∠FPE,再根据∠FPC=90°-∠FPE代入数据计算即可得解.【详解】在菱形ABCD中,连接EF,如图,∵∠A=70°,∴∠B=180°-870°=110°,∵E,F分别是边AB,BC的中点,∴BE=BF,∴∠BEF=(180°-∠B)=(180°-110°)=35°,∵EP⊥CD,AB∥CD,∴∠BEP=∠CPE=90°,∴∠FEP=90°-35°=55°,取AD的中点G,连接FG交EP于O,∵点F是BC的中点,G为AD的中点,∴FG∥DC,∵EP⊥CD,∴FG垂直平分EP,∴EF=PF,∴∠FPE=∠FEP=55°,∴∠FPC=90°-∠FPE=90°-55°=35°.故答案为:35°.【点睛】本题考查了菱形的性质,线段垂直平分线上的点到两端点的距离相等的性质,等边对等角的性质,熟记性质并作出辅助线求出EF=PF是解题的关键,也是本题的难点.17、8【解析】【分析】根据菱形的面积等于对角线乘积的一半进行计算即可求得.【详解】设另一条对角线的长为x,则有=16,解得:x=8,故答案为8.【点睛】本题考查了菱形的面积,熟知菱形的面积等于菱形对角线乘积的一半是解题的关键.18、52【解析】解:已知AC=10cm,BD=24cm,菱形对角线互相垂直平分,∴AO=5,BO=12cm,∴AB==13cm,∴BC=CD=AD=AB=13cm,∴菱形的周长为4×13=52cm三、解答题(共78分)19、【解析】

根据分式的运算法则即可取出答案.【详解】解:原式.【点睛】本题考查了分式的化简及学生的运算能力,解题的关键是熟练运用运算法则,本题属于基础题型.20、(1);(2)图见解析.【解析】

(1)利用平行四边形的性质,三角形法则即可解决问题.

(2)根据三角形法则解决问题即可.【详解】解:(1)∵四边形ABCD是平行四边形,

∴AB∥CD,AB=CD,

∵E是BC的中点,

∴BE=EC,∵,,.∴;(2)如图:,,向量,向量即为所求.【点睛】本题考查作图-复杂作图,平行四边形的性质,平面向量等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.21、(1)见解析(2)8万元,8万元,8.12万元(3)384人【解析】

试题分析:(1)根据扇形中各部分所占的百分比的和是1,即可求得3万元的员工所占的百分比,然后根据百分比的意义求得直方图中缺少部分的人数;(2)根据众数、中位数以及平均数的定义求解;(3)利用总数1200乘以对应的比例即可求解.【详解】试题解析:(1)3万元的员工的百分比为:1﹣36%﹣20%﹣12%﹣24%=8%,抽取员工总数为:4÷8%=50(人)5万元的员工人数为:50×24%=12(人)8万元的员工人数为:50×36%=18(人)(2)每人所创年利润的众数是8万元,每人所创年利润的中位数是8万元,平均数是:(3×4+5×12+8×18+10×10+15×6)=8.12万元.故答案为8万元,8万元,8.12万元.(3)1200×=384(人).答:在公司1200员工中有384人可以评为优秀员工.【点睛】考点:条形统计图;用样本估计总体;扇形统计图;加权平均数;中位数.22、(1)1;(2)(2)四边形ABCD为菱形,理由见解析;(3)【解析】

(1)由点N的坐标及CN的长度可得出点C的坐标,再利用反比例函数图象上点的坐标特征可求出点n的值;(2)利用反比例函数图象上点的坐标特征可得出点A,C的坐标,结合点P为线段AC的中点可得出点P的坐标,利用反比例函数图象上点的坐标特征可得出点B,D的坐标,结合点P的坐标可得出BP=DP,利用“对角线互相垂直平分的四边形为菱形”可证出四边形ABCD为菱形;(3)利用正方形的性质可得出AC=BD且点P为线段AC及BD的中点,利用反比例函数图象上点的坐标特征可求出点A,C,B,D的坐标,结合AC=BD可得出关于n的方程,解之即可得出结论.【详解】(1)∵点N的坐标为(2,0),CN⊥x轴,且,∴点C的坐标为(2,).∵点C在反比例函数的图象上,∴n=2×=1.(2)四边形ABCD为菱形,理由如下:当n=2时,.当x=2时,,∴点C的坐标为(2,1),点A的坐标为(2,4).∵点P是线段AC的中点,∴点P的坐标为(2,).当y=时,,解得:,∴点B的坐标为,点D的坐标为,∴,∴BP=DP.又∵AP=CP,AC⊥BD,∴四边形ABCD为菱形.(3)∵四边形ABCD为正方形,∴AC=BD,且点P为线段AC及BD的中点.当x=2时,y1=n,y2=2n,∴点A的坐标为(2,2n),点C的坐标为(2,n),AC=n,∴点P的坐标为.同理,点B的坐标为,点D的坐标为,.∵AC=BD,∴,∴,∴点A的坐标为,点B的坐标为.设直线AB的解析式为y=kx+b(k≠0),将A,B代入y=kx+b,得:,解得:,∴直线AB的解析式为y=x+.当x=0时,y=x+,∴点E的坐标为(0,),∴当四边形ABCD为正方形时,OE的长度为.【点睛】本题考查了反比例函数图象上点的坐标特征、菱形的判定以及正方形的性质,解题的关键是:(1)根据点C的坐标,利用反比例函数图象上点的坐标特征求出n值;(2)利用“对角线互相垂直平分的四边形为菱形”,证出四边形ABCD为菱形;(3)利用正方形的性质及反比例函数图象上点的坐标特征,找出关于n的方程.23、(1)见解析(2)AC=1【解析】

(1)证△BAD≌△EAD,推出AB=AE,BD=DE,根据三角形的中位线性质得出DM=CE即可;

(2)根据勾股定理求出AB,求出AE,根据三角形的中位线求出CE,即可得出答案.【详解】∵AD⊥BE,

∴∠ADB=∠ADE=90°,

∵AD为∠BAC的平分线,

∴∠BAD=∠EAD,

在△BAD和△EAD中,,

∴△BAD≌△EAD(SAS),

∴AB=AE,BD=DE,

∵M为BC的中点,

∴DM=CE

(2)∵在Rt△ADB中,∠ADB=90°,AD=6,BD=8,

∴由勾股定理得:AE=AB=,

∵DM=2,DM=CE,

∴CE=4,

∴AC=10+4=1.【点睛】本题考查了全等三角形的性质和判定,三角形的中位线,勾股定理的应用,解此题的关键是推出△BAD≌△EAD,题目比较好,难度适中.24、(1)详见解析;(2),理由详见解析.【解析】

(1)根据正方形的性质和全等三角形的判定和性质证明即可.(2)利用勾股定

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论