2024届吉林省长春南关区六校联考数学八年级下册期末质量跟踪监视模拟试题含解析_第1页
2024届吉林省长春南关区六校联考数学八年级下册期末质量跟踪监视模拟试题含解析_第2页
2024届吉林省长春南关区六校联考数学八年级下册期末质量跟踪监视模拟试题含解析_第3页
2024届吉林省长春南关区六校联考数学八年级下册期末质量跟踪监视模拟试题含解析_第4页
2024届吉林省长春南关区六校联考数学八年级下册期末质量跟踪监视模拟试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届吉林省长春南关区六校联考数学八年级下册期末质量跟踪监视模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.已知实数m、n,若m<n,则下列结论成立的是()A.m﹣3<n﹣3 B.2+m>2+n C. D.﹣3m<﹣3n2.下列说法正确的是()A.长度相等的两个向量叫做相等向量;B.只有方向相同的两个向量叫做平行向量;C.当两个向量不相等时,这两个有向线段的终点一定不相同;D.减去一个向量相当于加上这个向量的相反向量.3.已知两圆的半径R、r分别是方程x2-7x+10=0的两根,两圆的圆心距为7,则两圆的位置关系是()A.外离 B.相交 C.外切 D.内切4.如果a为任意实数,下列各式中一定有意义的是()A. B. C. D.5.如图,、分别是平行四边形的边、所在直线上的点,、交于点,请你添加一个条件,使四边形是平行四边形,下列选项中不能推断四边形是平行四边形的是()A. B. C. D.6.在、、、、3中,最简二次根式的个数有()A.4 B.3 C.2 D.17.已知一组数据a、b、c的平均数为5,方差为4,那么数据a+2、b+2、c+2的平均数和方差分别为()A.7,6 B.7,4 C.5,4 D.以上都不对8.在同一平面直角坐标系中,函数y=与函数y=-x+b(其中b是实数)的图象交点个数是().A.0个 B.1个 C.2个 D.0或1或2个9.用换元法解方程时,如果设=y,则原方程可化为()A.y+= B.2y2﹣5y+2=0 C.6y2+5y+2=0 D.3y+=10.已知多边形的内角和等于外角和,这个多边形的边数为()A. B. C. D.11.关于x的不等式的解集为x>3,那么a的取值范围为()A.a>3 B.a<3 C.a≥3 D.a≤312.如图,若一次函数的图象与x轴的交于点,与y轴交于点下列结论:①关于x的方程的解为;②随x的增大而减小;③关于x的方程的解为;④关于x的不等式的解为其中所有正确的为A.①②③ B.①③ C.①②④ D.②④二、填空题(每题4分,共24分)13.若有增根,则m=______14.如图,正方形ABCD的面积为,则图中阴影部分的面积为______________.15.一元二次方程x2﹣x=0的根是_____.16.如图,正方形中,点在上,交、于点、,点、分别为、的中点,连接、,若,,则______.17.如图,在△ABC中,DE是AC的垂直平分线,AE=3cm,△ABD的周长为15cm,那么△ABC的周长是_________cm.18.如图,菱形ABCD和菱形BEFG的边长分别是5和2,∠A=60°,连结DF,则DF的长为_____.三、解答题(共78分)19.(8分)如图,在Rt△ABC中,∠BAC=90°,D、E分别是AB、BC的中点,F在CA的延长线上,∠FDA=∠B,AC=6,AB=8,求四边形AEDF的周长P.20.(8分)如图,在△ABC中,AB=8,AC=1.点D在边AB上,AD=4.2.△ABC的角平分线AE交CD于点F.(1)求证:△ACD∽△ABC;(2)求的值.21.(8分)如图,AD是△ABC的角平分线,M是BC的中点,FM∥AD交BA的延长线于点F,交AC于点E.求证:(1)CE=BF.(2)AB+AC=2CE.22.(10分)已知,如图,O为正方形对角线的交点,BE平分∠DBC,交DC于点E,延长BC到点F,使CF=CE,连结DF,交BE的延长线于点G,连结OG.(1)求证:△BCE≌△DCF.(2)判断OG与BF有什么关系,证明你的结论.(3)若DF2=8-4,求正方形ABCD的面积?23.(10分)解方程:-=-1.24.(10分)为了解某校九年级学生的理化实验操作情况,随机抽查了40名同学实验操作的得分.根据获取的样本数据,制作了如下的条形统计图和扇形统计图.请根据相关信息,解答下列问题.(1)①中的描述应为“6分m%”,其中的m值为_________;扇形①的圆心角的大小是______;(2)求这40个样本数据平均数、众数、中位数;(3)若该校九年级共有160名学生,估计该校理化实验操作得满分的学生有多少人.25.(12分)如图是由25个边长为1的小正方形组成的网格,请在图中画出以为斜边的2个面积不同的直角三角形.(要求:所画三角形顶点都在格点上)26.如图1所示,在中,为边上一点,将沿折叠至处,与交于点.若,,则的大小为_______.提出命题:如图2,在四边形中,,,求证:四边形是平行四边形.小明提供了如下解答过程:证明:连接.∵,,,∴.∵,∴,.∴,.∴四边形是平行四边形(两组对边分别平行的四边形是平行四边形).反思交流:(1)请问小明的解法正确吗?如果有错,说明错在何处,并给出正确的证明过程.(2)用语言叙述上述命题:______________________________________________.运用探究:(3)下列条件中,能确定四边形是平行四边形的是()A.B.C.D.

参考答案一、选择题(每题4分,共48分)1、A【解析】

根据不等式的性质逐项分析即可.【详解】A.∵m<n,∴m﹣3<n﹣3,正确;B.∵m<n,∴2+m<2+n,故错误;C.∵m<n,∴,故错误;D.∵m<n,∴﹣3m>﹣3n,故错误;故选A.【点睛】本题考查了不等式的性质:①把不等式的两边都加(或减去)同一个整式,不等号的方向不变;②不等式两边都乘(或除以)同一个正数,不等号的方向不变;③不等式两边都乘(或除以)同一个负数,不等号的方向改变.2、D【解析】【分析】相等向量:长度相等且方向相同的两个向量叫做相等向量;平行向量(也叫共线向量):方向相同或相反的非零向量;平行向量包含相等向量的情况.即相等向量一定是平行向量,但是平行向量不一定是相等向量;长度相等且方向相反的两个向量.根据相关定义进行判断.【详解】长度相等且方向相同的两个向量叫做相等向量,故选项A错误;方向相同或相反的非零向量叫做平行向量,故选项B错误;当两个向量不相等时,这两个有向线段的终点可能相同,故选项C错误;减去一个向量相当于加上这个向量的相反向量,故选项D正确.故选:D【点睛】本题考核知识点:向量.解题关键点:理解向量的相关定义.3、C【解析】

首先解方程x2-7x+10=0,求得两圆半径R、r的值,又由两圆的圆心距为7,根据两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系即可得出两圆位置关系.【详解】解:∵x2-7x+10=0,

∴(x-2)(x-5)=0,

∴x1=2,x2=5,

即两圆半径R、r分别是2,5,

∵2+5=7,两圆的圆心距为7,

∴两圆的位置关系是外切.

故选:C.【点睛】本题考查圆与圆的位置关系与一元二次方程的解法,注意掌握两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系是解题的关键.4、C【解析】

解:选项A、B、D中的被开方数都有可能是负数,选项C的被开方数,一定有意义.故选C.5、A【解析】

根据平行四边形的性质得出AF∥CE,再根据平行四边形的判定定理得出即可.【详解】∵四边形是平行四边形,∴,,即.A、时,一组对边平行,另一组对边相等不能判定四边形为平行四边形,故错误;B、,又∵,∴四边形为平行四边形;C、∵,,∴四边形是平行四边形;D、∵,,∴四边形是平行四边形.故选:A.【点睛】本题考查了平行四边形的性质和判定,能熟记平行四边形的性质和判定定理是解此题的关键,答案不唯一.6、C【解析】

最简二次根式就是被开方数不含分母,并且不含有开方开的尽的因数或因式的二次根式,根据以上条件即可判断.【详解】、、不是最简二次根式.、3是最简二次根式.综上可得最简二次根式的个数有2个.故选C.【点睛】本题考查最简二次根式的定义,一定要掌握最简二次根式必须满足两个条件,被开方数不含分母且被开方数不含能开得尽方的因数或因式.7、B【解析】

根据数据a,b,c的平均数为5可知a+b+c=5×3,据此可得出(-2+b-2+c-2)的值;再由方差为4可得出数据a-2,b-2,c-2的方差.【详解】解:∵数据a,b,c的平均数为5,∴a+b+c=5×3=15,∴(a-2+b-2+c-2)=3,∴数据a-2,b-2,c-2的平均数是3;∵数据a,b,c的方差为4,∴[(a-5)2+(b-5)2+(c-5)2]=4,∴a-2,b-2,c-2的方差=[(a-2-3)2+(b-2-3)2+(c--2-3)2]=[(a-5)2+(b-5)2+(c-5)2]=4,故选B.【点睛】本题考查了平均数、方差,熟练掌握平均数以及方差的计算公式是解题的关键.8、D【解析】

联立两个函数可得,再根据根的判别式确定交点的情况即可.【详解】联立两个函数得∴根的判别式的值可以为任意数∴这两个函数的图象交点个数是0或1或2个故答案为:D.【点睛】本题考查了函数交点的问题,掌握根的判别式是解题的关键.9、D【解析】

因为已知设=y,易得=,即可转化为关于y的方程.【详解】设=y,则则原方程变形为:3y+=,故选:D.【点睛】本题主要考查了解分式方程中的换元法,换元的关键是仔细观察题目,看看可以把哪一部分看作一个整体,发现他们之间的联系,从而成功换元.10、B【解析】

设多边形的边数为n,则根据多边形的内角和公式与多边形的外角和为360°,列方程解答.【详解】解:设多边形的边数为n,根据题意列方程得,

(n−2)•180°=360°,

∴n−2=2,

解得:n=1.

故选:B.【点睛】本题考查了多边形的内角与外角,解题的关键是利用多边形的内角和公式并熟悉多边形的外角和为360°.11、D【解析】分析:先解第一个不等式得到x>3,由于不等式组的解集为x>3,则利用同大取大可得到a的范围.详解:解不等式2(x-1)>4,得:x>3,解不等式a-x<0,得:x>a,∵不等式组的解集为x>3,∴a≤3,故选D.点睛:本题考查了解一元一次不等式组:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.12、A【解析】

根据一次函数的性质进行分析即可.一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-,0);当k>0时,直线必通过一、三象限,y随x的增大而增大;当k<0时,直线必通过二、四象限,y随x的增大而减小.根据2分析函数与方程和不等式的关系.【详解】解:根据题意可知:由直线与x轴交点坐标可知关于x的方程的解为;由图象可知随x的增大而减小;由直线与y轴的交点坐标可知关于x的方程的解为;由函数图象分析出y>0时,关于x的不等式的解为所以,正确结论是:①②③.故选A.【点睛】本题考核知识点:一次函数的性质.解题关键点:结合函数的图象分析问题.二、填空题(每题4分,共24分)13、-1【解析】

增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.有增根,最简公分母x-3=0,所以增根是x=3,把增根代入化为整式方程的方程即可求出未知字母的值.【详解】方程两边都乘(x-3),得

x-1(x-3)=1-m,

∵方程有增根,

∴最简公分母x-3=0,即增根是x=3,

把x=3代入整式方程,得m=-1.

故答案是:-1.【点睛】解决增根问题的步骤:①确定增根的值;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.14、【解析】试题分析:根据正方形的对称性,可知阴影部分的面积为正方形面积的一半,因此可知阴影部分的面积为.15、x1=0,x2=1【解析】

方程左边分解因式后,利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解.【详解】方程变形得:x(x﹣1)=0,可得x=0或x﹣1=0,解得:x1=0,x2=1.故答案为x1=0,x2=1.【点睛】此题考查了解一元二次方程﹣因式分解法,熟练掌握方程的解法是解本题的关键.16、【解析】

连接,取的中点,连,,由中位线性质得到,,,,设,由勾股定理得方程,求解后进一步可得MN的值.【详解】解:连接,取的中点,连,,则,,,∵,为中点∴,∵BD平分,∴BE=EG设,则,∴在中,,解得(舍),∴,,∴.【点睛】本题考查了正方形和直角三角形的性质,添加辅助线后运用中位线性质和方程思想解决问题是解题的关键.17、1【解析】

根据DE是AC的垂直平分线以及AE=3cm,即可得出DA=DC且AC=6cm,再根据△ABD的周长和△ABC的周长之间的关系即可得出C△ABC的值.【详解】解:∵DE是AC的垂直平分线,AE=3cm,

∴AC=2AE=6cm,DA=DC.

∵C△ABD=AB+BD+DA,C△ABC=AB+BD+DC+CA=AB+BD+DA+CA=C△ABD+CA,且C△ABD=10cm,

∴C△ABC=15+6=1cm.

故答案为:1.【点睛】本题考查了线段垂直平分线的性质以及三角形的周长,解题的关键是找出△ABD的周长和△ABC的周长之间的关系.本题属于基础题,难道不大,解决该题型题目时,根据线段垂直平分线的性质找出相等的线段是关键.18、【解析】

延长FG交AD于点M,过点D作DH⊥AB交AB于点H,交GF的延长线于点N,由菱形的性质和勾股定理再结合已知条件可求出NF,DN的长,在直角三角形DNF中,再利用勾股定理即可求出DF的长.【详解】延长FG交AD于点M,过点D作DH⊥AB交AB于点H,交GF的延长线于点N,∵四边形ABCD和四边形BEFG都是菱形,∴GF∥BE,EF∥AM,∴四边形AMFE是平行四边形,∴AM=EF=2,MF=AE=AB+BE=5+2=7,∴DM=AD﹣AM=5﹣2=3,∵∠A=60°,∴∠DAH=30°,∴MN=DM=,∴DN==,NF=MF﹣MN=,在Rt△DNF中,DF==,故答案为:.【点睛】本题考查了菱形的性质、平行四边形的判定和性质、含30°直角三角形的性质以及勾股定理的运用,正确作出图形的辅助线是解题的关键.三、解答题(共78分)19、1【解析】

根据勾股定理先求出BC的长,再根据三角形中位线定理和直角三角形的性质求出DE和AE的长,进而由已知可判定四边形AEDF是平行四边形,从而求得其周长.【详解】解:在Rt△ABC中,∵AC=6,AB=8,∴BC==10,∵E是BC的中点,∴AE=BE=5,∴∠BAE=∠B,∵∠FDA=∠B,∴∠FDA=∠BAE,∴DF∥AE,∵D、E分别是AB、BC的中点,∴DE∥AC,DE=AC=3,∴四边形AEDF是平行四边形∴四边形AEDF的周长=2×(3+5)=1.【点睛】本题考查了三角形中位线定理的运用,熟悉直角三角形的性质、等腰三角形的判定以及平行四边形的判定.熟练运用三角形的中位线定理和直角三角形的勾股定理是解题的关键.20、(1)证明见解析;(2).【解析】

(1)由AB,AC,AD的长可得出,结合∠CAD=∠BAC即可证出△ACD∽△ABC;(2)利用相似三角形的性质可得出∠ACD=∠B,由AE平分∠BAC可得出∠CAF=BAE,进而可得出△ACF∽△BAE,再利用相似三角形的性质即可求出的值.【详解】(1)证明:∵AB=8,AC=1,AD=4.2,∴.又∵∠CAD=∠BAC,∴△ACD∽△ABC;(2)∵△ACD∽△ABC,∴∠ACD=∠B.∵AE平分∠BAC,∴∠CAF=BAE,∴△ACF∽△BAE,∴.【点睛】本题考查了相似三角形的判定与性质以及角平分线的定义,解题的关键是:(1)利用“两边对应成比例且夹角相等,两个三角形相似”找出△ACD∽△ABC;(2)利用“两角对应相等,两个三角形相似”找出△ACF∽△BAE.21、(1)见解析;(2)见解析【解析】

(1)延长CA交FM的平行线BG于G点,利用平行线的性质得到BM=CM、CE=GE,从而证得CE=BF;

(2)利用上题证得的EA=FA、CE=BF,进一步得到AB+AC=AB+AE+EC=AB+AF+EC=BF+EC=2EC.【详解】解:(1)证明:延长CA交FM的平行线BG于G点,

则∠G=∠CAD,∠GBA=∠BAD,

∵AD平分∠BAC,

∴∠BAD=∠CAD,

∴AG=AB,

∵FM∥AD

∴∠F=∠BAD、∠FEA=∠DAC

∵∠BAD=∠DAC,

∴∠F=∠FEA,

∴EA=FA,

∴GE=BF,

∴M为BC边的中点,

∴BM=CM,

∵EM∥GB,

∴CE=GE,

∴CE=BF;

(2)证明:∵EA=FA、CE=BF,

∴AB+AC=AB+AE+EC=AB+AF+EC=BF+EC=2EC.【点睛】本题考查了三角形的中位线定理,解题的关键是正确地构造辅助线,另外题目中还考查了平行线等分线段定理.22、(2)证明见解析.(2)OG∥BF且OG=BF;证明见解析.(3)2.【解析】

(2)利用正方形的性质,由全等三角形的判定定理SAS即可证得△BCE≌△DCF;(2)首先证明△BDG≌△BGF,从而得到OG是△DBF的中位线,即可得出答案;(3)设BC=x,则DC=x,BD=x,由△BGD≌△BGF,得出BF=BD,CF=(-2)x,利用勾股定理DF2=DC2+CF2,解得x2=2,即正方形ABCD的面积是2.【详解】(2)证明:在△BCE和△DCF中,,∴△BCE≌△DCF(SAS);(2)OG∥BF且OG=BF,理由:如图,∵BE平分∠DBC,∴∠2=∠3,在△BGD和△BGF中,,∴△BGD≌△BGF(ASA),∴DG=GF,∵O为正方形ABCD的中心,∴DO=OB,∴OG是△DBF的中位线,∴OG∥BF且OG=BF;(3)设BC=x,则DC=x,BD=x,由(2)知△BGD≌△BGF,∴BF=BD,∴CF=(-2)x,∵DF2=DC2+CF2,∴x2+[(-2)x]2=8-4,解得x2=2,∴正方形ABCD的面积是2.考点:2.正方形的性质;2.全等三角形的判定与性质;3.勾股定理.23、x=-1【解析】

分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【详解】解:去分母得:1+6-x=-1x+6,解得:x=-1,经检验x=-1是分式方程的解.【点睛】此题考查了解分式方程,利用了转化的思想,解分式方程时注意要检验.24、(1)10;;(2)8.3;9;8;(3)28【解析】

(1)所占百分比=所求人数与总人数之比,即可求出m的值;再用乘以①所占的百分比,计算即可得解;(2)先计算出H的值,用总人数减去其他分数段的人数即可;根据平均数的定义求出平均数;众数是一组数据中出现次数最多的数据;找中位数要把数据从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数进行解答;(3)用九年级总学生人数乘以满分的人数所占的分数即可.【详解】解:(1),即m=10;故答案为:10;.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论