版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
四川省乐至县2024年八年级下册数学期末达标检测模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.如图,在中,,,,为边上一动点,于点,于点,则的最小值为()A.2.4 B.3 C.4.8 D.52.某校篮球队队员的年龄分布情况如下表,则该校篮球队队员的平均年龄为()A.13岁 B.13.5岁 C.13.7岁 D.14岁3.要使分式有意义,x应满足的条件是()A. B. C. D.4.如图所示,正方形ABCD中,E,F是对角线AC上两点,连接BE,BF,DE,DF,则添加下列哪一个条件可以判定四边形BEDF是菱形()A.∠1=∠2 B.BE=DF C.∠EDF=60° D.AB=AF5.我市某一周每天的最高气温统计如下(单位:℃):27,28,1,28,1,30,1.这组数据的众数与中位数分别是().A.28,28 B.28,1 C.1,28 D.1,16.若样本x1+1,x2+1,…,xn+1的平均数为10,方差为2,则对于样本x1+2,x2+2,…,xn+2,下列结论正确的是()A.平均数为10,方差为2 B.平均数为11,方差为3C.平均数为11,方差为2 D.平均数为12,方差为47.关于2、6、1、10、6的这组数据,下列说法正确的是()A.这组数据的众数是6 B.这组数据的中位数是1C.这组数据的平均数是6 D.这组数据的方差是108.正多边形的内角和为540°,则该多边形的每个外角的度数为()A.36° B.72° C.108° D.360°9.园林队在某公园进行绿化,中间休息了一段时间.已知绿化面积(单位:平方米)与工作时间(单位:小时)的函数关系的图象如图所示,则休息后园林队每小时绿化面积为A.40平方米 B.50平方米 C.80平方米 D.100平方米10.函数中,自变量的取值范围是()A. B. C. D.11.我校是教育部的全国青少年校园足球“满天星”训练基地,旨在“踢出快乐,拼出精彩”,如图,校园足球图片正中的黑色正五边形的内角和是()A. B. C. D.12.如图,正比例函数和一次函数的图像相交于点.当时,则()A. B. C. D.二、填空题(每题4分,共24分)13.如图,在平面直角坐标系中,过点分别作轴于点,轴于点,、分别交反比例函数的图像于点、,则四边形的面积为__________.14.数学家们在研究15,12,10这三个数的倒数时发现:112-115=110-112.因此就将具有这样性质的三个数称为调和数,如6,3,2也是一组调和数.现有一组调和数:x,5,3(x>5),则15.经过某十字路口的汽车,可直行,也可向左转或向右转,如果这三种可能性大小相同,则两辆汽车经过该十字路口时都直行的概率是.16.计算__.17.下图是利用平面直角坐标系画出的老北京一些地点的示意图,这个坐标系分别以正东和正北方向为x轴和y轴的正方向,如果表示右安门的点的坐标为(-2,-3),表示朝阳门的点的坐标为(3,2),那么表示西便门的点的坐标为___________________.18.一个数的平方等于这个数本身,这个数为_________.三、解答题(共78分)19.(8分)一辆汽车在某次行驶过程中,油箱中的剩余油量y(升)与行驶路程x(千米)之间是一次函数关系,其部分图象如图所示.(1)求y关于x的函数关系式;(不需要写定义域)(2)已知当油箱中的剩余油量为8升时,该汽车会开始提示加油,在此次行驶过程中,行驶了500千米时,司机发现离前方最近的加油站有30千米的路程,在开往该加油站的途中,汽车开始提示加油,这时离加油站的路程是多少千米?20.(8分)如图,以矩形的顶点为坐标原点,所在直线为轴,所在直线为轴,建立平面直角坐标系.已知,,,点为轴上一动点,以为一边在右侧作正方形.(1)若点与点重合,请直接写出点的坐标.(2)若点在的延长线上,且,求点的坐标.(3)若,求点的坐标.21.(8分)用公式法解下列方程:
(1)2x2−4x−1=0;
(2)5x+2=3x2.22.(10分)已知关于x的一元二次方程x2﹣2(k﹣1)x+k(k+2)=0有两个不相等的实数根.(1)求k的取值范围;(2)写出一个满足条件的k的值,并求此时方程的根.23.(10分)心理学研究发现,一般情况下,在一节45分钟的课中,学生的注意力随学习时间的变化而变化.开始学习时,学生的注意力逐步增强,中间有一段时间学生的注意力保持较为理想的稳定状态,随后学生的注意力开始分散.经过实验分析可知,学生的注意力指标数y随时间x(分钟)的变化规律如下图所示(其中、分别为线段,为双曲线的一部分)。(1)开始学习后第5分钟时与第35分钟时相比较,何时学生的注意力更集中?(2)某些数学内容的课堂学习大致可分为三个环节:即“教师引导,回顾旧知——自主探索,合作交流——总结归纳,巩固提高”.其中重点环节“自主探索,合作交流”这一过程一般需要30分钟才能完成,为了确保效果,要求学习时的注意力指标数不低于40,请问这样的课堂学习安排是否合理?并说明理由.24.(10分)某农机租赁公司共有50台收割机,其中甲型20台、乙型30台,现将这50台联合收割机派往A,B两地区收割小麦,其中30台派往A地区,20台派往B地区,两地区与该农机公司商定的每天租赁价格如下表:(1)设派往A地区x台乙型联合收割机,租赁公司这50台联合收割机天获得的租金为y元,求y关于x的函数关系式,并写出自变量的取值范围:(2)若使农机租赁公司这50台收割机一天所获租金不低于79600元,为农机租赁公司拟出一个分派方案,使该公司50台收割机每天获得租金最高,并说明理由.25.(12分)某蛋糕店为了吸引顾客,在A、B两种蛋糕中,轮流降低其中一种蛋糕价格,这样形成两种盈利模式,模式一:A种蛋糕利润每盒8元,B种蛋糕利润每盒15元;模式二:A种蛋糕利润每盒14元,B种蛋糕利润每盒11元每天限定销售A、B两种蛋糕共40盒,且都能售完,设每天销售A种蛋糕x盒(1)设按模式一销售A、B两种蛋糕所获利润为y1元,按模式二销售A、B两种蛋糕所获利润为y2元,分别求出y1、y2关于x的函数解析式;(2)在同一个坐标系内分别画出(1)题中的两个函数的图象;(3)若y始终表示y1、y2中较大的值,请问y是否为x的函数,并说说你的理由,并直接写出y的最小值.26.在一个边长为(2+3)cm的正方形的内部挖去一个长为(2+)cm,宽为(﹣)cm的矩形,求剩余部分图形的面积.
参考答案一、选择题(每题4分,共48分)1、C【解析】
根据三个角都是直角的四边形是矩形,得四边形EDFB是矩形,根据矩形的对角线相等,得EF=BD,则EF的最小值即为BD的最小值,根据垂线段最短,知:BD的最小值即等于直角三角形ABC斜边上的高.【详解】如图,连接BD.∵在△ABC中,AB=8,BC=6,AC=10,∴AB2+BC2=AC2,即∠ABC=90°.又∵DE⊥AB于点E,DF⊥BC于点F,∴四边形EDFB是矩形,∴EF=BD.∵BD的最小值即为直角三角形ABC斜边上的高,即4.8,∴EF的最小值为4.8,故选C.【点睛】此题综合运用了勾股定理的逆定理、矩形的判定及性质、直角三角形的性质,要能够把要求的线段的最小值转换为便于分析其最小值的线段.2、C【解析】
根据加权平均数的计算公式计算可得.【详解】解:该校篮球队队员的平均年龄为:(岁)故答案为:C.【点睛】本题主要考查加权平均数,解题的关键是掌握加权平均数的定义和计算公式.3、D【解析】
直接利用分式有意义的条件,即分母不等于0,进而得出答案.【详解】解:要使分式有意义,x应满足的条件是:x-1≠0,
解得:x≠1.
故选:D.【点睛】本题考查分式有意义的条件,正确把握分式有意义的条件是解题关键.4、B【解析】
由正方形的性质,可判定△CDF≌△CBF,则BF=FD=BE=ED,故四边形BEDF是菱形.【详解】由正方形的性质知,∠ACD=∠ACB=45°,BC=CD,CF=CF,
∴△CDF≌△CBF,
∴BF=FD,
同理,BE=ED,
∴当BE=DF,有BF=FD=BE=ED,四边形BEDF是菱形.
故选B.【点睛】考查了菱形的判定,解题关键是灵活运用全等三角形的判定和性质,及菱形的判定.5、D【解析】
根据中位数和众数的定义,先将这组数据按顺序依次排列,取中间的那个数即为中位数,取出现次数最多的那个数即为众数;【详解】众数:1;中位数:1;故选:D.【点睛】本题主要考查众数和中位数的定义,熟练掌握相关的定义是求解本题的关键.6、C【解析】
分析:利用样本的平均数和方差的公式计算,即可得到结果.详解:因为样本的平均数是,方差为,∴,即,方差则,样本的方差为,故选C.点睛:本题主要考查了数据的平均数与方差的计算,其中熟记样本数据的平均数和方差的公式是解答的关键,着重考查了推理与运算能力.7、A【解析】
根据方差、算术平均数、中位数、众数的概念进行分析.【详解】数据由小到大排列为1,2,6,6,10,它的平均数为(1+2+6+6+10)=5,数据的中位数为6,众数为6,数据的方差=[(1﹣5)2+(2﹣5)2+(6﹣5)2+(6﹣5)2+(10﹣5)2]=10.1.故选A.考点:方差;算术平均数;中位数;众数.8、B【解析】
先根据内角和的度数求出正多边形的边数,再根据外角和度数进行求解.【详解】设这个正多边形的边数为x,则(x-2)×180°=540°,解得x=5,所以每个外角的度数为360°÷5=72°,故选B.【点睛】此题主要考查多边形的内角和公式,解题的关键是熟知多边形的内角和与外角和公式.9、B【解析】试题分析:根据图象可得,休息后园林队2小时绿化面积为160﹣60=100平方米,每小时绿化面积为100÷2=50(平方米).故选B.考点:函数的图象.10、A【解析】
根据二次根式的性质的意义,被开方数大于或等于0,可以求出x的范围.【详解】解:由有意义得,解得:故选A【点睛】本题考查了函数自变量的取值范围,函数自变量的范围一般从三个方面考虑:当函数表达式是整式时,自变量可取全体实数;当函数表达式是分式时,考虑分式的分母不能为0;当函数表达式是二次根式时,被开方数非负.11、C【解析】
根据多边形内角和公式(n-2)×180°即可求出结果.【详解】解:黑色正五边形的内角和为:(5-2)×180°=540°,
故选:C.【点睛】本题考查了多边形的内角和公式,解题关键是牢记多边形的内角和公式.12、C【解析】
由图象可以知道,当x=3时,两个函数的函数值是相等的,再根据函数的增减性即可得到结论.【详解】解:由图象知,当x>3时,y1的图象在y2上方,y2<y1.故答案为:D.【点睛】本题考查了两条直线相交与平行,正确的识别图象是解题的关键.二、填空题(每题4分,共24分)13、1【解析】
根据反比例函数系数k的几何意义可得S△DBO=S△AOC=|k|=1,再利用矩形OCPD的面积减去△BDO和△CAO的面积即可.【详解】解:∵B、A两点在反比例函数的图象上,∴S△DBO=S△AOC=×2=1,∵P(2,3),∴四边形DPCO的面积为2×3=6,∴四边形BOAP的面积为6﹣1﹣1=1,故答案为:1.【点睛】此题主要考查了反比例函数k的几何意义,关键是掌握在反比例函数的图象上任意一点象坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是|k|,且保持不变.14、1【解析】∵x>5∴x相当于已知调和数1,代入得,1315、.【解析】
试题分析:画树状图为:共有9种等可能的结果数,其中两辆汽车都直行的结果数为1,所以则两辆汽车都直行的概率为,故答案为.考点:列表法与树状图法.16、【解析】
通过原式约分即可得到结果.【详解】解:原式=,故答案为:.【点睛】此题考查了分式的乘除法,熟练掌握运算法则是解本题的关键.17、(-3,1)【解析】
根据右安门的点的坐标可以确定直角坐标系中原点在正阳门,建立直角坐标系即可求解.【详解】根据右安门的点的坐标为(−2,−3),可以确定直角坐标系中原点在正阳门,∴西便门的坐标为(−3,1),故答案为(−3,1);【点睛】此题考查坐标确定位置,解题关键在于建立直角坐标系.18、0或1【解析】
根据特殊数的平方的性质解答.【详解】解:平方等于这个数本身的数只有0,1.故答案为:0或1.【点睛】此题考查了特殊数值的平方的性质,要注意平时在学习中进行积累.三、解答题(共78分)19、(1)该一次函数解析式为y=﹣110x+1.(2)在开往该加油站的途中,汽车开始提示加油,这时离加油站的路程是10【解析】【分析】(1)根据函数图象中点的坐标利用待定系数法求出一次函数解析式;(2)根据一次函数图象上点的坐标特征即可求出剩余油量为8升时行驶的路程,即可求得答案.【详解】(1)设该一次函数解析式为y=kx+b,将(150,45)、(0,1)代入y=kx+b中,得150k+b=45b=60,解得:k=-∴该一次函数解析式为y=﹣110(2)当y=﹣110x+1=8解得x=520,即行驶520千米时,油箱中的剩余油量为8升.530﹣520=10千米,油箱中的剩余油量为8升时,距离加油站10千米,∴在开往该加油站的途中,汽车开始提示加油,这时离加油站的路程是10千米.【点睛】本题考查了一次函数的应用,熟练掌握待定系数法,弄清题意是解题的关键.20、(1);(2);(3),.【解析】
(1)与点重合则点E为(6,3)(2)作轴,证明:即则点E为(8,3)(3)分情况解答,在点右侧,过点作轴,证明:;在点左侧,点作轴,证明:【详解】解:(1)与点重合则点E再x轴的位置为2+4=6.(2)过点作轴,∵∠BAD=∠EMD=∠BDE=90°,∴∠BDA+∠ABD=∠BDA+∠MDE,∴∠ABD=∠MDE,∵BD=DE,,点在线段的中垂线上,.,..(3)①点在点右侧,如图,过点作轴,同(2)设,可得:,求得:,(舍去)②点在点左侧,如图,过点作轴,同上得设,可得:,,求得:,(舍去)综上所述:,【点睛】本题考查正方形的性质,解题关键在于分情况作出垂直线.21、(1)x1=,x2=;(2)x1=2,x2=−.【解析】
把原方程化为一元二次方程的一般形式,根据求根公式x=求解即可.【详解】(1)∵△=16+8=24>0,
∴x==,
x1=,x2=;
(2)先整理得到3x2−5x−2=0,∵△=25+24=49>0,∴x=,x1=2,x2=−.【点睛】本题考查解一元二次方程-公式法,解题的关键是掌握解一元二次方程-公式法.22、方程的根【解析】
(1)根据方程的系数结合根的判别式,即可得出关于k的一元一次不等式,解之即可得出k的取值范围;(1)取k=0,再利用分解因式法解一元二次方程,即可求出方程的根.【详解】(1)∵关于x的一元二次方程x1﹣1(k﹣a)x+k(k+1)=0有两个不相等的实数根,∴△=[﹣1(k﹣1)]1﹣4k(k﹣1)=﹣16k+4>0,解得:k<.(1)当k=0时,原方程为x1+1x=x(x+1)=0,解得:x1=0,x1=﹣1.∴当k=0时,方程的根为0和﹣1.【点睛】本题考查了根的判别式以及因式分解法解一元二次方程,解题的关键是:(1)牢记“当△>0时,方程有两个不相等的实数根”;(1)取k=0,再利用分解因式法解方程.23、(1)第35分钟时比开始学习后第5分钟学生的注意力更集中;(2)这样的课堂学习安排合理得.【解析】
(1)从图象上看,AB表示的函数为一次函数,BC是平行于x轴的线段,CD为双曲线的一部分,设出解析式,代入数值可以解答,把自变量的值代入相对应的函数解析式,求出对应的函数值比较得出;(2)求出相对应的自变量的值,代入相对应的函数解析式,求出注意力指标数与40相比较,得出答案【详解】(1)设AB段的函数关系式为,将代入得解得:∴.AB段的函数关系式为设CD段的函数关系式为,将代入得,∴反比例函数的解析式为:把代入得:把代入得:∴第35分钟时比开始学习后第5分钟学生的注意力更集中(2)把代入得:把代入得:根据题意得∴这样的课堂学习安排合理得。【点睛】此题考查反比例函数的应用,解题关键在于把自变量的值代入相对应的函数解析式24、(1)y=200x+74000(10≤x≤30);(2)将30台乙型收割机全部派往A地区,20台甲型收割机全部派往B地区,这样公司每天获得租金最高,理由见解析.【解析】
(1)根据未知量,找出相关量,列出函数关系式;
(2)利用不等式的性质进行求解,对x进行分类即可;根据一次函数的单调性可直接判断每天获得租金最高的方案,得出结论.【详解】解:(1)由于派往A地的乙型收割机x台,则派往B地的乙型收割机为(30-x)台,派往A,B地区的甲型收割机分别为(30-x)台和(x-10)台.
∴y=1600x+1200(30-x)+1800(30-x)+1600(x-10)=200x+74000(10≤x≤30).
(2)由题意,得200x+74000≥79600,解得x≥28,
∵10≤x≤30,x是正整数,∴x=28、29、30
∴有3种不同分派方案:
①当x=28时,派往A地区的甲型收割机2台,乙型收割机28台,余者全部派往B地区;
②当x=29时,派往A地区的甲型收割机1台,乙型收割机29台,余者全部派往B地区;
③当x=30时,派往A地区的甲型收割机0台,乙型收割机30台,余者全部派往B地区;∵y=200x+74000中,
∴y随x的增大而增大,∴当x=30时,y取得最大值
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度钢房拆除与临时安置服务一体化合同2篇
- 面向小学生的网络安全意识和实践能力培养
- 2025版中小学生课后辅导中心安全协议书3篇
- 二零二五年度石材运输合同纠纷处理规则3篇
- 2025版无底薪健身器材销售代表合同3篇
- 二零二五年度绿色环保型工厂土地购置与转让协议3篇
- 二零二五年度办公大楼楼顶租赁及管理服务合同4篇
- 二零二五年度车辆煤炭运输车辆安全监控系统采购合同3篇
- 二零二五年度餐厅员工福利保障及社会保险缴纳合同3篇
- 2025年度店铺装修施工与售后服务保障合同范本
- 汉语言沟通发展量表(长表)-词汇及手势(8-16月龄)
- 高速公路相关知识讲座
- 儿科关于抗生素使用的PDCA
- 商务服务业的市场细分和定位策略
- 财政学论文我国财政支出存在的问题及改革建议
- 2022年湖南高速铁路职业技术学院单招数学模拟试题及答案解析
- 小学生必备古诗
- 手术室护理实践指南2023年
- 移动商务内容运营(吴洪贵)任务六 结合热度事件的内容传播
- 新人教版六年级下册数学全册课件
- 江苏对口单招英语考纲词汇总结
评论
0/150
提交评论