2024年浙江省杭州市四校数学八年级下册期末考试试题含解析_第1页
2024年浙江省杭州市四校数学八年级下册期末考试试题含解析_第2页
2024年浙江省杭州市四校数学八年级下册期末考试试题含解析_第3页
2024年浙江省杭州市四校数学八年级下册期末考试试题含解析_第4页
2024年浙江省杭州市四校数学八年级下册期末考试试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024年浙江省杭州市四校数学八年级下册期末考试试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.某人匀速跑步到公园,在公园里某处停留了一段时间,再沿原路匀速步行回家,此人离家的距离y与时间x的关系的大致图象是A. B. C. D.2.直角三角形中,两直角边分别是12和5,则斜边上的中线长是()A.13 B.9 C.8.5 D.6.53.如图,在给定的一张平行四边形纸片上作一个菱形.甲、乙两人的作法如下:甲:连接AC,作AC的垂直平分线MN分别交AD,AC,BC于M,O,N,连接AN,CM,则四边形ANCM是菱形.乙:分别作∠A,∠B的平分线AE,BF,分别交BC,AD于E,F,连接EF,则四边形ABEF是菱形.根据两人的作法可判断()A.甲正确,乙错误 B.乙正确,甲错误 C.甲、乙均正确 D.甲、乙均错误4.下列计算错误的是()A.﹣= B.÷2=C. D.3+2=55.方程3x2﹣7x﹣2=0的根的情况是()A.方程没有实数根B.方程有两个不相等的实数根C.方程有两个相等的实数很D.不确定6.下列各组线段能构成直角三角形的是()A. B. C. D.7.如图,在中,是上一点,,,垂足为,是的中点,若,则的长度为()A.36 B.18 C.9 D.58.在一次数学课上,张老师出示了一个题目:“如图,▱ABCD的对角线相交于点O,过点O作EF垂直于BD交AB,CD分别于点F,E,连接DF,BE,请根据上述条件,写出一个正确结论.”其中四位同学写出的结论如下:小青:OE=OF;小何:四边形DFBE是正方形;小夏:S四边形AFED=S四边形FBCE;小雨:∠ACE=∠CAF,这四位同学写出的结论中不正确的是()A.小青 B.小何 C.小夏 D.小雨9.如图,在▱ABCD中,∠BAD=120°,连接BD,作AE∥BD交CD延长线于点E,过点E作EF⊥BC交BC的延长线于点F,且CF=1,则AB的长是()A.2 B.1 C. D.10.如果直角三角形的边长为3,4,a,则a的值是()A.5 B.6 C. D.5或二、填空题(每小题3分,共24分)11.在平行四边形ABCD中,若∠A+∠C=140°,则∠B=.12.已知一个直角三角形的两条直角边的长分别为6cm、8cm,则它的斜边的中线长________cm.13.如图,正方形AFCE中,D是边CE上一点,B是CF延长线上一点,且AB=AD,若四边形ABCD的面积是12cm2,则AC的长是_____cm.14.阅读下面材料:小明想探究函数的性质,他借助计算器求出了y与x的几组对应值,并在平面直角坐标系中画出了函数图象:x…-3-2-1123…y…2.831.73001.732.83…小聪看了一眼就说:“你画的图象肯定是错误的.”请回答:小聪判断的理由是.请写出函数的一条性质:.15.一次函数y=(m-3)x+5的函数值y随着x的增大而减小,则m的取值范围_______.16.函数的自变量x的取值范围是______.17.小明用100元钱去购买笔记本和钢笔共30件,已知每本笔记本2元,每枝钢笔5元,那么小明最多能买________枝钢笔.18.用反证法证明“若,则”时,应假设_____.三、解答题(共66分)19.(10分)如图,在平面直角坐标系中,O为原点,点A(2,1),B(﹣2,4),直线AB与y轴交于点C.(1)求点C的坐标;(2)求证:△OAB是直角三角形.20.(6分)如图,AC、BD相交于点O,且O是AC、BD的中点,点E在四边形ABCD外,且∠AEC=∠BED=90°,求证:边形ABCD是矩形.21.(6分)如图,□ABCD中,过对角线BD上一点P做EF∥BCGH∥AB.(1)写出图中所有的平行四边形(包括□ABCD)的个数;(2)写出图中所有面积相等的平行四边形.22.(8分)某校组织275名师生郊游,计划租用甲、乙两种客车共7辆,已知甲客车载客量是30人,乙客车载客量是45人,其中,每辆乙种客车租金比甲种客车多100元,5辆甲种客车和2辆乙种客车租金共需3000元.(1)租用一辆甲种客车、一辆乙种客车的租金各多少元?(2)设租用甲种客车辆,总租车费为元,求与的函数关系式;在保证275名师生都有座位的前提下,求当租用甲种客车多少辆时,总租车费最少,并求出这个最少费用.23.(8分)(1)如图,已知,在△ABC中,∠ACB=90°,CD⊥AB垂足为D,BC=6,AC=8,求AB与CD的长.(2)如图,用3个全等的菱形构成活动衣帽架,顶点A、E、F、C、G、H是上、下两排挂钩,根据需要可以改变挂钩之间的距离(比如AC两点可以自由上下活动),若菱形的边长为13厘米,要使两排挂钩之间的距离为24厘米,并在点B、M处固定,则B、M之间的距离是多少?24.(8分)已知:是一元二次方程的两实数根.(1)求的值;(2)求x1x2的值.25.(10分)如图,某住宅小区在施工过程中留下了一块空地,已知AD=4米,CD=3米,∠ADC=90°,AB=13米,BC=12米,小区为美化环境,欲在空地上铺草坪,已知草坪每平方米100元,试问用该草坪铺满这块空地共需花费多少元?26.(10分)在平面直角坐标系中,△ABC的三个顶点的位置如图所示,点A′的坐标是(﹣2,2),现将△ABC平移,使点A变换为点A′,点B′、C′分别是B、C的对应点.(1)请画出平移后的△A′B′C′(不写画法);(2)并直接写出点B′、C′的坐标:B′()、C′();(3)若△ABC内部一点P的坐标为(a,b),则点P的对应点P′的坐标是().

参考答案一、选择题(每小题3分,共30分)1、B【解析】

图象应分三个阶段,第一阶段:匀速跑步到公园,在这个阶段,离家的距离随时间的增大而增大;第二阶段:在公园停留了一段时间,这一阶段离家的距离不随时间的变化而改变.故D错误;第三阶段:沿原路匀速步行回家,这一阶段,离家的距离随时间的增大而减小,故A错误,并且这段的速度小于于第一阶段的速度,则C错误.故选B考点:函数的图象【点睛】本题考查了函数的图象,理解每阶段中,离家的距离与时间的关系,根据图象的斜率判断运动的速度是解决本题的关键.2、D【解析】

根据题意首先利用勾股定理列式求出斜边,再根据直角三角形斜边上的中线等于斜边的一半进行解答即可.【详解】解:由勾股定理得,斜边,所以斜边上的中线长.故选:D.【点睛】本题考查直角三角形斜边上的中线等于斜边的一半的性质以及勾股定理,熟记相关性质是解题的关键.3、C【解析】试题分析:甲的作法正确:∵四边形ABCD是平行四边形,∴AD∥BC.∴∠DAC=∠ACN.∵MN是AC的垂直平分线,∴AO=CO.在△AOM和△CON中,∵∠MAO=∠NCO,AO=CO,∠AOM=∠CON,∴△AOM≌△CON(ASA),∴MO=NO.∴四边形ANCM是平行四边形.∵AC⊥MN,∴四边形ANCM是菱形.乙的作法正确:如图,∵AD∥BC,∴∠1=∠2,∠2=∠1.∵BF平分∠ABC,AE平分∠BAD,∴∠2=∠3,∠5=∠2.∴∠1=∠3,∠5=∠1.∴AB=AF,AB=BE.∴AF=BE.∵AF∥BE,且AF=BE,∴四边形ABEF是平行四边形.∵AB=AF,∴平行四边形ABEF是菱形.故选C.4、D【解析】

利用二次根式加减乘除的运算方法逐一计算得出答案,进一步比较选择即可【详解】A.﹣=,此选项计算正确;B.÷2=,此选项计算正确;C.,此选项计算正确;D.3+2.此选项不能进行计算,故错误故选D【点睛】此题考查二次根式的混合运算,掌握运算法则是解题关键5、B【解析】

先求一元二次方程的判别式的值,由△与0的大小关系来判断方程根的情况即可求解.【详解】由根的判别式△=b2﹣4ac=(﹣7)2﹣4×3×(﹣2)=49+24=73>0,所以方程有两个不相等的实数根.故选B.【点睛】本题考查了一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.6、D【解析】

欲求证是否为直角三角形,这里给出三边的长,只要验证两小边的平方和等于最长边的平方即可.【详解】A、12+22≠22,不能构成直角三角形;B、72+122≠132,不能构成直角三角形;C、52+82≠102,不能构成直角三角形;D、,能构成直角三角形.故选:D.【点睛】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.勾股定理的逆定理:若三角形三边满足a2+b2=c2,那么这个三角形是直角三角形.7、C【解析】

根据三角形的中位线定理,在三角形中准确应用,并且求证E为CD的中点,再求证EF为△BCD的中位线,从而求得结论.【详解】∵在△ACD中,∵AD=AC,AE⊥CD,∴E为CD的中点,又∵F是CB的中点,∴EF为△BCD的中位线,∴EF∥BD,EF=BD,∵BD=18,∴EF=9,故选:C.【点睛】本题考查了三角形中位线定理和等腰三角形的性质.三角形中位线的性质:三角形的中位线平行于第三边且等于第三边的一半.8、B【解析】

根据平行四边形的性质可得OA=OC,CD∥AB,从而得∠ACE=∠CAF,可判断出小雨的结论正确,证明△EOC≌△FOA,可得OE=OF,判断出小青的结论正确,由△EOC≌△FOA继而可得出S四边形AFED=S四边形FBCE,判断出小夏的结论正确,由△EOC≌△FOA可得EC=AF,继而可得出四边形DFBE是平行四边形,从而可判断出四边形DFBE是菱形,无法判断是正方形,判断出故小何的结论错误即可.【详解】∵四边形ABCD是平行四边形,∴OA=OC,CD∥AB,∴∠ACE=∠CAF,(故小雨的结论正确),在△EOC和FOA中,,∴△EOC≌△FOA,∴OE=OF(故小青的结论正确),∴S△EOC=S△AOF,∴S四边形AFED=S△ADC=S平行四边形ABCD,∴S四边形AFED=S四边形FBCE,(故小夏的结论正确),∵△EOC≌△FOA,∴EC=AF,∵CD=AB,∴DE=FB,DE∥FB,∴四边形DFBE是平行四边形,∵OD=OB,EO⊥DB,∴ED=EB,∴四边形DFBE是菱形,无法判断是正方形,(故小何的结论错误),故选B.【点睛】本题考查了平行四边形的性质、菱形的判定、全等三角形的判定与性质、正方形的判定等,综合性较强,熟练掌握各相关性质与定理是解题的关键.9、B【解析】

证明四边形ABDE是平行四边形,得出AB=DE,证出CE=2AB,求出∠CEF=30°,得出CE=2CF=2,即可得出AB的长.【详解】解:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∠BCD=∠BAD=120°,∵AE∥BD,∴四边形ABDE是平行四边形,∴AB=DE,∴CE=2AB,∵∠BCD=120°,∴∠ECF=60°,∵EF⊥BC,∴∠CEF=30°,∴CE=2CF=2,∴AB=1;故选:B.【点睛】本题考查平行四边形的性质与判定、直角三角形的性质;熟练掌握平行四边形的判定与性质是解决问题的关键.10、D【解析】

分两种情况分析:a是斜边或直角边,根据勾股定理可得.【详解】解:当a是斜边时,a=;当a是直角边时,a=所以,a的值是5或故选:D.【点睛】本题考核知识点:勾股定理,解题关键点:分两种情况分析.二、填空题(每小题3分,共24分)11、110°【解析】试题解析:∵平行四边形ABCD,∴∠A+∠B=180°,∠A=∠C,∵∠A+∠C=140°,∴∠A=∠C=70°,∴∠B=110°.考点:平行四边形的性质.12、1【解析】

绘制符合题意的直角三角形,并运用勾股定理,求出其斜边的长度,再根据直角三角形斜边上的中线长度等于斜边长度的一半求解.【详解】解:如下图所示,假设符合题意,其中BC=6cm,AC=8cm,∠C=90°,点D为AB的中点.由勾股定理可得:==10(cm)又∵点D为AB的中点∴CD==1(cm)故答案为:1.【点睛】本题考查了勾股定理(直角三角形两条直角边的平方和等于斜边的平方),直角三角形斜边上的中线长度是斜边长度的一半,其中后者是解本题的关键.13、【解析】

证Rt△AED≌Rt△AFB,推出S△AED=S△AFB,根据四边形ABCD的面积是24cm2得出正方形AFCE的面积是12cm2,求出AE、EC的长,根据勾股定理求出AC即可.【详解】解:∵四边形AFCE是正方形,∴AF=AE,∠E=∠AFC=∠AFB=90°,∵在Rt△AED和Rt△AFB中,∴Rt△AED≌Rt△AFB(HL),∴S△AED=S△AFB,∵四边形ABCD的面积是12cm2,∴正方形AFCE的面积是12cm2,∴AE=EC=(cm),根据勾股定理得:AC=,故答案为:.【点睛】本题考查了全等三角形的性质和判定,正方形性质,勾股定理等知识点的应用.关键是求出正方形AFCE的面积.14、如:因为函数值不可能为负,所以在x轴下方不会有图象;当x≤-1时,y随x增大而减小,当x≥1时,y随x增大而增大【解析】【分析】结合函数解析式y的取值范围可判断图象的大概情况,从函数图象可得出相关信息.【详解】(1).因为,函数值不可能为负,所以在x轴下方不会有图象,所以是错的;(2).根据函数的图象看得出:当x≤-1时,y随x增大而减小,当x≥1时,y随x增大而增大.故答案为(1).如:因为函数值不可能为负,所以在x轴下方不会有图象;(2).当x≤-1时,y随x增大而减小,当x≥1时,y随x增大而增大【点睛】本题考核知识点:函数的图象.解题关键点:从函数图象获取信息.15、m<1【解析】

一次函数y=kx+b(k≠2)的k<2时,y的值随x的增大而减小,据此可解答.【详解】∵一次函数y=(m-1)x+5,y随着自变量x的增大而减小,∴m-1<2,解得:m<1,故答案是:m<1.【点睛】本题考查了一次函数图象与系数的关系.一次函数y=kx+b图象与y轴的正半轴相交⇔b>2,一次函数y=kx+b图象与y轴的负半轴相交⇔b<2,一次函数y=kx+b图象过原点⇔b=2.函数值y随x的增大而减小⇔k<2;函数值y随x的增大而增大⇔k>2.16、:x≠﹣1.【解析】

根据分母不等于0列出不等式求解即可.【详解】解:由题意得,x+1≠0,解得x≠﹣1.故答案为x≠﹣1.【点睛】本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.17、1【解析】

解:设小明一共买了x本笔记本,y支钢笔,根据题意,可得,可求得y≤因为y为正整数,所以最多可以买钢笔1支.故答案为:1.18、【解析】

反证法的步骤中,第一步是假设结论不成立,反面成立,可据此进行判断.【详解】解:用反证法证明“若,则”时,应假设.故答案为:.【点睛】此题主要考查了反证法,解此题关键要懂得反证法的意义及步骤.在假设结论不成立时要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定.三、解答题(共66分)19、(1)(0,52);(2【解析】

(1)利用待定系数法求出直线AB的解析式,求出点C的坐标;(2)根据勾股定理分别求出OA2、OB2、AB2,根据勾股定理的逆定理判断即可.【详解】(1)解:设直线AB的解析式为:y=kx+b,点A(2,1),B(﹣2,4),则2k+b=1-2k+b=4解得,k=-3∴设直线AB的解析式为:y=﹣34x+5∴点C的坐标为(0,52(2)证明:∵点A(2,1),B(﹣2,4),∴OA2=22+12=5,OB2=22+42=20,AB2=(4-1)2+(-2-2)2=25,则OA2+OB2=AB2,∴△OAB是直角三角形.【点睛】本题考查的是待定系数法求一次函数解析式、勾股定理的逆定理,掌握如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形是解题的关键.20、见解析.【解析】

连接EO,首先根据O为BD和AC的中点,得出四边形ABCD是平行四边形,在Rt△AEC中EO=12AC,在Rt△EBD中,EO=12BD,得到【详解】解:连接EO如图所示:∵O是AC、BD的中点,∴AO=CO,BO=DO,∴四边形ABCD是平行四边形,在RtΔEBD中,∵O为BD中点,∴EO=1在RtΔAEC中,∵O为AC中点,∴EO=1∴AC=BD,又∵四边形ABCD是平行四边形,∴平行四边形ABCD是矩形.【点睛】此题主要考查了矩形的判定、平行四边形的判定、直角三角形斜边上的中线性质,关键是掌握直角三角形斜边上的中线等于斜边的一半.21、(1)9个;(2)见解析【解析】

(1)根据平行四边形的性质可得平行四边形的个数;(2)根据平行四边形的性质:平行四边形的对角线将平行四边形的面积平分,可推出3对平行四边形的面积相等.【详解】(1)∵在▱ABCD中,EF∥BC,GH∥AB,∴四边形EBHP、PHCF、PFDG、AEPG、ABHG、GHCD、BCFE、AEFD、ABCD均为平行四边形,∴图中所有的平行四边形(包括□ABCD)的个数为9个(2)∵四边形ABCD是平行四边形,∴S△ABD=S△CBD,∵BP是平行四边形BEPH的对角线,∴S△BEP=S△BHP,∵PD是平行四边形GPFD的对角线,∴S△GPD=S△FPD,∴S△ABD-S△BEP-S△GPD=S△BCD-S△BHP-S△PFD,即S▱AEPG=S▱HCFP,∴S▱ABHG=S▱BCFE,同理S▱AEFD=S▱HCDG,即:S▱ABHG=S▱BCFE,S▱AGPE=S▱HCFP,S▱AEFD=S▱HCDG,【点睛】本题考查了平行四边形的判定与性质,熟知平行四边形的一条对角线可以把平行四边形分成两个全等的三角形,可以把平行四边形的面积平分是解题的关键.22、(1)租用一辆甲种客车的费用为300元,则一辆乙种客车的费用为400元;(2)w=-100x+2800;当租用甲种客车2辆时,总租车费最少,最少费用为1元.【解析】

(1)设租用一辆甲种客车的费用为x元,则一辆乙种客车的费用为(x+100)元,列出方程即可解决问题;(2)由题意w=300x+400(7-x)=-100x+2800,列出不等式求出x的取值范围,利用一次函数的性质即可解决问题.【详解】(1)设租用一辆甲种客车的费用为x元,则一辆乙种客车的费用为(x+100)元,由题意5x+2(x+100)=2300,解得x=300,答:租用一辆甲种客车的费用为300元,则一辆乙种客车的费用为400元.(2)由题意w=300x+400(7-x)=-100x+2800,又30x+45(7-x)≥275,解得x≤,∴x的最大值为2,∵-100<0,∴x=2时,w的值最小,最小值为1.答:当租用甲种客车2辆时,总租车费最少,最少费用为1元.【点睛】本题考查一元一次方程的应用、一次函数的应用、一元一次不等式的应用等知识,解题的关键是理解题意,学会构建一次函数解决最值问题.23、(1)AB=10,CD=4.8;(2)BM=30厘米.【解析】

(1)在直角三角形ABC中,利用勾股定理求出AB的长,再利用面积法求出CD的长即可.(2)连接AC,BD交于点O,根据四边形ABCD是菱形求出AO的长,然后根据勾股定理求出BO的长,于是可以求出B、M两点的距离.【详解】解:(1)在△ABC中,∠ACB=90°,CD⊥AB垂足为D,BC=6,AC=8,由勾股定理得:AB=

=10,∵S△ABC=AB•CD=

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论