版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
四川省眉山市龙正区2024届数学八年级下册期末监测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.如图顺次连接等腰梯形四边中点得到一个四边形,再顺次连接所得四边形四边的中点得到的图形是()A.等腰梯形 B.直角梯形 C.菱形 D.矩形2.小明发现下列几组数据能作为三角形的边:①3,4,5;②5,12,13;③12,15,20;④8,24,25;其中能作为直角三角形的三边长的有()组A.1 B.2 C.3 D.43.如图,正方形ABCD,点E、F分别在AD,CD上,BG⊥EF,点G为垂足,AB=5,AE=1,CF=2,则BG的长为()A. B.5 C. D.4.已知关于x的一元二次方程x2+mx﹣8=0的一个实数根为2,则另一实数根及m的值分别为()A.4,﹣2 B.﹣4,﹣2 C.4,2 D.﹣4,25.在下列说法中:①有一个外角是120°的等腰三角形是等边三角形.②有两个外角相等的等腰三角形是等边三角形.③有一边上的高也是这边上的中线的等腰三角形是等边三角形.④三个外角都相等的三角形是等边三角形.其中正确的有()A.1个 B.2个 C.3个 D.4个6.四边形中,,,,,垂足分别为,则四边形一定是()A.正方形 B.菱形 C.平行四边形 D.矩形7.如图,在△ABC中,∠A=90°,点D在AC边上,DE//BC,若∠1=155°,则∠B的度数为()A.55° B.65° C.45° D.75°8.如果5x=6y,那么下列结论正确的是()A. B. C. D.9.式子在实数范围内有意义,则的取值范围是()A. B. C. D.10.“厉害了,华为!”2019年1月7日,华为宣布推出业界最高性能ABM-based处理器—鲲鹏920.据了解,该处理器采用7纳米制造工艺,已知1纳米=0.000000001米,则7纳米用科学记数法表示为()A.7×10-9米 B.7×10-8米 C.7×108米 D.0.7×10-8米11.已知,四边形ABCD的对角线AC⊥BD,E,F,G,H分别是边AB,BC,CD,DA的中点,那么四边形EFGH是()A.平行四边形 B.矩形 C.菱形 D.正方形12.如图在▱ABCD中,已知AC=4cm,若△ACD的周长为13cm,则▱ABCD的周长为()A.26cm B.24cm C.20cm D.18cm二、填空题(每题4分,共24分)13.如图,将直线沿轴向下平移后的直线恰好经过点,且与轴交于点,在x轴上存在一点P使得的值最小,则点P的坐标为.14.若个数,,,的中位数为,则_______.15.如图所示,DE为△ABC的中位线,点F在DE上,且∠AFB=90°,若AB=5,BC=9,则EF的长为______.16.要使分式的值为1,则x应满足的条件是_____17.|1﹣|=_____.18.观察下列各式:,,,……请你将发现的规律用含自然数n(n≥1)的等式表示出来__________________.三、解答题(共78分)19.(8分)近年来雾霾天气给人们的生活带来很大影响,空气质量问题倍受人们关注.某商场计划购进一批、两种空气净化装置,每台种设备价格比每台种设备价格多0.7万元,花3万元购买种设备和花7.2万元购买种设备的数量相同.(1)求种、种设备每台各多少万元?(2)根据销售情况,需购进、两种设备共20台,总费用不高于15万元,求种设备至少要购买多少台?(3)若每台种设备售价0.6万元,每台种设备售价1.4万元,在(2)的情况下商场应如何进货才能使这批空气净化装置售完后获利最多?20.(8分)如图,在中,,平分交于点,于点,过点作交于点,连接.(1)求证:四边形是菱形;(2)若,,求菱形的周长.21.(8分)如图1,有一张长40cm,宽30cm的长方形硬纸片,截去四个小正方形之后,折成如图2所示的无盖纸盒,设无盖纸盒高为xcm.(1)用关于x的代数式分别表示无盖纸盒的长和宽.(2)若纸盒的底面积为600cm2,求纸盒的高.(3)现根据(2)中的纸盒,制作了一个与下底面相同大小的矩形盒盖,并在盒盖上设计了六个总面积为279cm2的矩形图案A﹣F(如图3所示),每个图案的高为ycm,A图案的宽为xcm,之后图案的宽度依次递增1cm,各图案的间距、A图案与左边沿的间距、F图案与右边沿的间距均相等,且不小于0.3cm,求x的取值范围和y的最小值.22.(10分)先因式分解,再求值:4x3y﹣9xy3,其中x=﹣1,y=1.23.(10分)某车行经销的A型自行车去年6月份销售总额为1.6万元,今年由于改造升级每辆车售价比去年增加200元,今年6月份与去年同期相比,销售数量相同,销售总额增加25%.今年A,B两种型号车的进价和售价如下表:
(1)求今年A型车每辆售价多少元?
(2)该车行计划7月份用不超过4.3万元的资金新进一批A型车和B型车共50辆,应如何进货才能使这批车售完后获利最多?24.(10分)已知,如图,在平行四边形ABCD中,AC、BD相交于O点,点E、F分别为BO、DO的中点,连接AF,CE.(1)求证:四边形AECF是平行四边形;(2)如果E,F点分别在DB和BD的延长线上时,且满足BE=DF,上述结论仍然成立吗?请说明理由.25.(12分)近几年购物的支付方式日益增多,某数学兴趣小组就此进行了抽样调查.调查结果显示,支付方式有:A微信、B支付宝、C现金、D其他,该小组对某超市一天内购买者的支付方式进行调查统计,得到如下两幅不完整的统计图.请你根据统计图提供的信息,解答下列问题:(1)本次一共调查了多少名购买者?(2)请补全条形统计图;在扇形统计图中A种支付方式所对应的圆心角为度.(3)若该超市这一周内有1600名购买者,请你估计使用A和B两种支付方式的购买者共有多少名?26.已知为原点,点及在第一象限的动点,且,设的面积为.(1)求关于的函数解析式;(2)求的取值范围;(3)当时,求点坐标;(4)画出函数的图象.
参考答案一、选择题(每题4分,共48分)1、D【解析】
首先作出图形,根据三角形的中位线定理,可以得到,,,再根据等腰梯形的对角线相等,即可证得四边形EFGH的四边相等,即可证得是菱形,然后根据三角形中位线定理即可证得四边形OPMN的一组对边平行且相等,则是平行四边形,在根据菱形的对角线互相垂直,即可证得平行四边形的一组临边互相垂直,即可证得四边形OPMN是矩形.【详解】解:连接AC,BD.∵E,F是AB,AD的中点,即EF是的中位线.,同理:,,.又等腰梯形ABCD中,..四边形EFGH是菱形.是的中位线,∴EFEG,,同理,NMEG,∴EFNM,四边形OPMN是平行四边形.,,又菱形EFGH中,,平行四边形OPMN是矩形.故选:D.【点睛】本题考查了等腰梯形的性质,菱形的判定,矩形的判定,以及三角形的中位线定理,关键的应用三角形的中位线定理得到四边形EFGH和四边形OPMN的边的关系.2、B【解析】
根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个是直角三角形判定则可.如果有这种关系,就是直角三角形,没有这种关系,就不是直角三角形,分析得出即可.【详解】①∵∴此三角形是直角三角形,符合题意;②∵∴此三角形是直角三角形,符合题意;③∵∴此三角形不是直角三角形,不符合题意;④∵∴此三角形不是直角三角形,不符合题意;故其中能作为直角三角形的三边长的有2组故选:B【点睛】本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.3、C【解析】
如图,连接BE、BF.首先利用勾股定理求出EF,再根据S△BEF=•EF•BG=S正方形ABCD-S△ABE-S△BCF-S△DEF,列出方程即可解决问题.【详解】如图,连接BE、BF.∵四边形ABCD是正方形,∴AB=BC=CD=AD=5,∵AE=1,CF=2,∴DE=4,DF=3,∴EF==5,∵S△BEF=•EF•BG=S正方形ABCD-S△ABE-S△BCF-S△DEF,∴•5•BG=25-•5•1-•5•2-•3•4,∴BG=,故选C.【点睛】本题考查正方形的性质、勾股定理,三角形的面积等知识,解题的关键是学会添加常用辅助线,学会利用分割法求三角形面积,学会构建方程解决问题,属于中考常考题型.4、D【解析】试题分析:由根与系数的关系式得:,=﹣2,解得:=﹣4,m=2,则另一实数根及m的值分别为﹣4,2,故选D.考点:根与系数的关系.5、B【解析】
根据有一个角等于60°的等腰三角形是等边三角形,三个角相等的三角形是等边三角形进行分析即可.【详解】解:①有一个外角是120°的等腰三角形是等边三角形,说法正确;②有两个外角相等的等腰三角形是等边三角形,说法错误;③有一边上的高也是这边上的中线的三角形是等边三角形,说法错误;④三个外角都相等的三角形是等边三角形,说法正确,正确的命题有2个,故选:B.【点睛】此题主要考查了命题与定理,关键是掌握等边三角形的判定方法.6、C【解析】
根据已知条件得到BF=DE,由垂直的定义得到∠AED=∠CFB=90°,根据全等三角形的判定定理可得Rt△ADE≌Rt△CBF,根据全等三角形的性质得到∠ADE=∠CBF,由平行线的判定得到AD∥BC,根据平行四边形的判定定理即可得到结论.【详解】证明:∵BE=DF,∴BE−EF=DF−EF,即BF=DE,∵AE⊥BD,CF⊥BD,∴∠AED=∠CFB=90°,在Rt△ADE与Rt△CBF中,AD=BC,DE=BF,∴Rt△ADE≌Rt△CBF(HL),∴∠ADE=∠CBF,∴AD∥BC,∴四边形ABCD是平行四边形,故选:C.【点睛】本题考查了全等三角形的判定和性质,平行四边形的判定和性质,熟练掌握全等三角形的判定和性质是解题的关键.7、B【解析】
先根据补角的定义求出∠CDE的度数,再由平行线的性质求出∠C的度数,根据余角的定义即可得出结论.【详解】解:∵∠1=155°,∴∠CDE=180°-155°=25°.∵DE∥BC,∴∠C=∠CDE=25°.∵∠A=90°,∴∠B=90°-25°=65°.故选:B.【点睛】本题考查的是平行线的性质,以及余角的性质,解题的关键是掌握两直线平行,内错角相等.8、A【解析】试题解析:A,可以得出:故选A.9、D【解析】
根据二次根式有意义的条件(被开方数≥0),列出不等式求解即可得到答案;【详解】解:式子在实数范围内有意义,即:,解得:,故选:D;【点睛】本题主要考查了二次根式有意义的条件,掌握二次根式有意义即被开方数≥0是解题的关键.10、A【解析】
绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】7纳米=0.000000007米=7×10﹣9米.故选A.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.11、B【解析】
根据中位线定义得出EF=HG,EF∥HG,证明四边形EFGH为平行四边形,再根据矩形的判定法则即可判定【详解】∵E,F分别是边AB,BC的中点,∴EF=AC,EF∥AC,同理,HG=AC,HG∥AC,∴EF=HG,EF∥HG,∴四边形EFGH为平行四边形,∵F,G分别是边BC,CD的中点,∴FG∥BD,∴∠FGH=90°,∴平行四边形EFGH为矩形,故选:B.【点睛】此题考查三角形中位线的性质,矩形的判定,解题关键在于利用中位线的性质进行解答12、D【解析】
根据三角形周长的定义得到AD+DC=9cm.然后由平行四边形的对边相等的性质来求平行四边形的周长.【详解】解:∵AC=4cm,若△ADC的周长为13cm,∴AD+DC=13﹣4=9(cm).又∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,∴平行四边形的周长为2(AB+BC)=18cm.故选D.二、填空题(每题4分,共24分)13、(,0)【解析】
如图所示,作点B关于x轴对称的点B',连接AB',交x轴于P,则点P即为所求,【详解】解:设直线y=﹣x沿y轴向下平移后的直线解析式为y=﹣x+a,把A(2,﹣4)代入可得,a=﹣2,∴平移后的直线为y=﹣x﹣2,令x=0,则y=﹣2,即B(0,﹣2)∴B'(0,2),设直线AB'的解析式为y=kx+b,把A(2,﹣4),B'(0,2)代入可得,,解得,∴直线AB'的解析式为y=﹣3x+2,令y=0,则x=,∴P(,0).14、【解析】
根据中位数的概念求解.【详解】解:∵5,x,8,10的中位数为7,∴,解得:x=1.故答案为:1.【点睛】本题考查了中位数的知识,将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.15、1【解析】
利用直角三角形斜边上的中线等于斜边的一半,可求出DF的长,再利用三角形的中位线平行于第三边,并且等于第三边的一半,可求出DE的长,进而求出EF的长【详解】解:∵∠AFB=90°,D为AB的中点,∴DF=AB=1.5,∵DE为△ABC的中位线,∴DE=BC=4.5,∴EF=DE-DF=1,故答案为:1.【点睛】本题考查了直角三角形斜边上的中线性质:在直角三角形中,斜边上的中线等于斜边的一半和三角形的中位线性质:三角形的中位线平行于第三边,并且等于第三边的一半.16、x=-1.【解析】
根据题意列出方程即可求出答案.【详解】由题意可知:=1,∴x=-1,经检验,x=-1是原方程的解.故答案为:x=-1.【点睛】本题考查解分式方程,注意,别忘记检验,本题属于基础题型.17、﹣1.【解析】
根据差的绝对值是大数减小数,可得答案.【详解】|1﹣|=﹣1,故答案为﹣1.【点睛】本题考查了实数的性质,差的绝对值是大数减小数.18、【解析】
观察分析可得,,,则将此规律用含自然数n(n≥1)的等式表示出来是【详解】由分析可知,发现的规律用含自然数n(n≥1)的等式表示出来是故答案为:【点睛】本题主要考查二次根式,找出题中的规律是解题的关键,观察各式,归纳总结得到一般性规律,写出用n表示的等式即可.三、解答题(共78分)19、(1)种设备每台0.5万元,种设备每台l.2万元;(2)种设备至少购买13台;(3)当购买种设备13台,种设备7台时,获利最多.【解析】
(1)设种设备每台万元,则种设备每台万元,根据“3万元购买种设备和花7.2万元购买种设备的数量相同”列分式方程即可求解;(2)设购买种设备台,则购买种设备台,根据总费用不高于15万元,列不等式求解即可;【详解】(1)设种设备每台万元,则种设备每台万元,根据题意得:,解得,经检验,是原方程的解,∴.则种设备每台0.5万元,种设备每台l.2万元;(2)设购买种设备台,则购买种设备台,根据题意得:,解得:,∵为整数,∴种设备至少购买13台;(3)每台种设备获利(万元),每台种设备获利(万元),∵,∴购进种设备越多,获利越多,∴当购买种设备13台,种设备(台)时,获利最多.【点睛】本题主要考查了二元一次方程组和一元一次不等式组的应用,关键是弄懂题意,找出题目中的关键语句,列出方程和不等式.20、(1)见解析;(2)【解析】
(1)由角平分线的性质可得∠ABD=∠CBD,再由垂直的定义得出∠EDB=∠CDB,然后由CF∥DE,得出∠EDB=∠CFD,最后利用菱形的判定解答即可;(2)利用勾股定理及菱形的性质求解即可.【详解】解:(1)证明:解:(1)证明:∵BD平分∠ABC,∴∠ABD=∠CBD,∵∠ACB=90°,DE⊥AB,∴DE=CD,∠CBD+∠CDB=90°,∠EBD+∠EDB=90°,∴∠EDB=∠CDB,∵CF∥DE,∴∠EDB=∠CFD,∴∠CDB=∠CFD,∴CD=CF,∴DE=CF,∴DE=EF=FC=DC∴四边形是菱形.(2)在RT△ADE中,,,∴∠A=30°,AC=,在RT△ADE中,∵∠A=30°,∴AD=2DE,∵四边形是菱形,∴DE=DC,∴AD=2DC,∴AC=3DC=6,∴DC=2,∴四边形CDEF的周长为:2×4=8.【点睛】本题考查了角平分线的性质,勾股定理及菱形的判定与性质,解题的关键是掌握这些性质和判定.21、(1)长,宽,(2)高为5cm,(3)x的取值范围为:,y的最小值为1.【解析】
根据长两个小正方形的长,宽两个小正方形的宽即可得到答案,根据面积长宽,列出关于x的一元二次方程,解之即可,设各图案的间距、A图案与左边沿的间距、F图案与右边沿的间距为m,关于x的一元一次不等式,解之即可,根据面积长宽,列出y关于x的反比例函数,根据反比例函数的增减性求最值.【详解】根据题意得:长,宽,根据题意得:整理得:解得:舍去,,纸盒的高为5cm,设各图案的间距、A图案与左边沿的间距、F图案与右边沿的间距为m,,,解得:,根据题意得:,,y随着x的增大而减小,当取到最大值时,y取到最小值,即当时,,x的取值范围为:,y的最小值为1.【点睛】本题考查二次函数的应用,一元二次方程的应用,解题的关键:(2)根据等量关系列出一元二次方程(3)根据数量关系列出不等式和反比例函数并利用反比例函数的增减性求最值.22、2.【解析】
先提取公因式,再根据平方差公式分解因式,最后代入求出即可.【详解】4x3y﹣9xy3=xy(4x1-9y1)=xy(1x+3y)(1x﹣3y),当x=﹣1,y=1时,原式=(﹣1)×1×[1×(﹣1)+3×1]×[1×(﹣1)﹣3×1]=﹣1×4×(﹣8)=2.【点睛】本题考查了求代数式的值和分解因式,能够正确分解因式是解此题的关键.23、(1)型车每辆售价为1000元;(2)型车30辆、型车20辆,获利最多.【解析】
(1)设今年型车每辆售价为元,则去年型车每辆售价为元,根据数量总价单价结合今年6月份与去年同期相比销售数量相同,即可得出关于的分式方程,解之经检验后即可得出结论;(2)设购进型车辆,则购进型车辆,根据总价单价数量结合总费用不超过4.3万元,即可得出关于的一元一次不等式,解之即可得出的取值范围,再根据销售利润单辆利润购进数量即可得出销售利润关于的函数关系式,利用一次函数的性质解决最值问题即可.【详解】解:(1)设今年型车每辆售价为元,则去年型车每辆售价为元,根据题意得:,解得:,经检验,是原分式方程的解.答:今年型车每辆售价为1000元.(2)设购进型车辆,则购进型车辆,根据题意得:,解得:.销售利润为,,当时,销售利润最多.答:当购进型车30辆、购进型车20辆时,才能使这批车售完后获利最多.【点睛】本题考查了分式方程的应用、一次函数的最值以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据数量关系,找出销售利润关于的函数关系式.24、见解析【解析】(1)根据平行四边形的性质可得AO=CO,BO=DO,再由条件点E、F分别为BO、DO的中点,可得EO=OF,进而可判定四边形AECF是平行四边形;(2)由等式的性质可得EO=FO,再加上条件AO=CO可判定四边形AECF是平行四边形.(1)证明:∵四边形ABCD是平行四边形,∴AO=CO,BO=DO,∵点E、F分别为BO、DO的中点,∴EO=OF,∵AO=CO,∴四边形AECF是平行四边形;(2)解:结论仍然成立,理由:∵BE=DF,BO=DO,∴EO=
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025至2031年中国数码影院功放机行业投资前景及策略咨询研究报告
- 2025至2030年计数测速表项目投资价值分析报告
- 2025至2031年中国全塑水平尺行业投资前景及策略咨询研究报告
- 2025至2030年火龙果项目投资价值分析报告
- 植物生长调节剂项目风险识别与评估综合报告
- 装修工程夜间施工协议
- 搬家服务满意度合同模板
- 2025年股东协议风险控制指南
- 二零二五年度创业孵化器办公室租赁与创业辅导合同
- 2025年物业管网燃气维护合同
- 2024年05月浙江金华成泰农商银行员工招考笔试历年参考题库附带答案详解
- 北京市海淀区2024-2025学年七年级上学期期末考试数学试题(含答案)
- 带看协议书范本(2篇)
- 2025-2030年中国科教玩具行业发展动态及前景趋势分析报告新版
- 股权投资项目建议书
- 2025年北京广播电视台招聘(140人)历年高频重点提升(共500题)附带答案详解
- 2024复工复产安全培训
- 中学生宿舍日常与管理
- 2025中国南光集团限公司校园招聘高频重点提升(共500题)附带答案详解
- 江苏省苏州市2024-2025学年第一学期八年级数学期末模拟卷(一)(无答案)
- 【历史】秦汉时期:统一多民族国家的建立和巩固复习课件-2024-2025学年统编版七年级历史上册
评论
0/150
提交评论