版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖北省孝昌县2024年数学八年级下册期末教学质量检测试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.某经销商销售一批多功能手表,第一个月以200元/块的价格售出80块,第二个月起降价,以150元/块的价格将这批手表全部售出,销售总额超过了2.7万元,则这批手表至少有()A.152块 B.153块 C.154块 D.155块2.为了解某校八年级900名学生每天做家庭作业所用的时间,随机抽取其中120名学生进行抽样调查下列说法正确的是()A.该校八年级全体学生是总体 B.从中抽取的120名学生是个体C.每个八年级学生是总体的一个样本 D.样本容量是1203.如图,D,E是△ABC中AB,BC边上的点,且DE∥AC,∠ACB角平分线和它的外角的平分线分别交DE于点G和H.则下列结论错误的是()A.若BG∥CH,则四边形BHCG为矩形B.若BE=CE时,四边形BHCG为矩形C.若HE=CE,则四边形BHCG为平行四边形D.若CH=3,CG=4,则CE=2.54.下列实数中,无理数是()A. B. C. D.5.下列四个多项式中,不能因式分解的是()A.a2+a B. C. D.6.若点P到△ABC的三个顶点的距离相等,则点P是△ABC()A.三条高的交点 B.三条角平分线的交点C.三边的垂直平分线的交点 D.三条中线的交点7.把边长为3的正方形ABCD绕点A顺时针旋转45°得到正方形AB′C′D′,边BC与D′C′交于点O,则四边形ABOD′的周长是()A.6 B.6 C.3 D.3+38.分式方程xx-1-1=3(x-1)(x+2)A.x=1B.x=-1C.无解D.x=-29.在Rt△ABC中,AC=BC,点D为AB中点.∠GDH=90°,∠GDH绕点D旋转,DG,DH分别与边AC,BC交于E,F两点.下列结论:①AE+BF=AC,②AE2+BF2=EF2,③S四边形CEDF=S△ABC,④△DEF始终为等腰直角三角形.其中正确的是()A.①②③④ B.①②③ C.①④ D.②③10.若分式(x≠0,y≠0)中x,y同时扩大3倍,则分式的值()A.扩大3倍 B.缩小3倍 C.改变 D.不改变二、填空题(每小题3分,共24分)11.已知a=﹣,b=+,求a2+b2的值为_____.12.为了估计湖里有多少鱼,我们从湖里捕上150条鱼作上标记,然后放回湖里去,经过一段时间再捕上300条鱼,其中带标记的鱼有30条,则估计湖里约有鱼_______条.13.小明五次测试成绩为:91、89、88、90、92,则五次测试成绩平均数为_____,方差为________.14.如图,直角三角形DEF是直角三角形ABC沿BC平移得到的,如果AB=6,BE=2,DH=1,则图中阴影部分的面积是____.15.已知四边形中,,,含角()的直角三角板(如图)在图中平移,直角边,顶点、分别在边、上,延长到点,使,若,,则点从点平移到点的过程中,点的运动路径长为__________.16.如图,在Rt△ABC中,∠ACB=90°,AB的垂直平分线DE交BC的延长线于F,若∠F=30°,DE=1,则EF的长是_____.17.在反比例函数图象的毎一支曲线上,y都随x的增大而减小,则k的取值范围是__________.18.如图,在平面直角坐标系中,直线l为正比例函数y=x的图象,点A1的坐标为(1,0),过点A1作x轴的垂线交直线l于点D1,以A1D1为边作正方形A1B1C1D1;过点C1作直线l的垂线,垂足为A2,交x轴于点B2,以A2B2为边作正方形A2B2C2D2;过点C2作x轴的垂线,垂足为A3,交直线l于点D3,以A3D3为边作正方形A3B3C3D3,…,按此规律操作下所得到的正方形AnBnCnDn的面积是_____.三、解答题(共66分)19.(10分)(1)已知x=+1,y=-1,求x2+y2的值.(2)解一元二次方程:3x2+2x﹣2=1.20.(6分)某校举办“书香校园”读书活动,经过对八年级(2)班的全体学生的每人每月读书的数量(单位:本)进行统计分析,得到条形统计图如图所示:(1)填空:该班学生读书数量的众数是本,中位数是本;(2)求该班学生每月的平均读书数量?(结果精确到0.1)21.(6分)商场销售一批衬衫,平均每天可销售20件,每件盈利40元.为了扩大销售,增加盈利,尽量减少库存,商场决定采取适当的降价措施.经调查发现,如果每件衬衫每降价5元,商场平均每天可多售出10件.求:(1)若商场平均每天要盈利1200元,每件衬衫应降价多少元?(2)要使商场平均每天盈利1600元,可能吗?请说明理由.22.(8分)如图,平行四边形ABCD的两条对角线相交于O,且AC平分∠DAB(1)求证:四边形ABCD是菱形(2)若AC=16,BD=12,试求点O到AB的距离.23.(8分)计算:(1)(+)(﹣)﹣(+3)2;(2).24.(8分)如图,是学习分式方程应用时,老师板书的问题和两名同学对该题的解答.(老师找聪聪和明明分别用不同的方法解答此题)(1)聪聪同学所列方程中的表示_______________________________________.(2)明明一时紧张没能做出来,请你帮明明完整的解答出来.25.(10分)如图,的对角线、相交于点,.(1)求证:;(2)若,连接、,判断四边形的形状,并说明理由.26.(10分)如图所示,在等边三角形中,,射线,点从点出发沿射线以的速度运动,同时点从点出发沿射线以的速度运动,设运动时间为.(1)填空:当为时,是直角三角形;(2)连接,当经过边的中点时,四边形是否是特殊四边形?请证明你的结论.(3)当为何值时,的面积是的面积的倍.
参考答案一、选择题(每小题3分,共30分)1、C【解析】
根据题意设出未知数,列出相应的不等式,从而可以解答本题.【详解】解:设这批手表有x块,
解得,
这批手表至少有154块,
故选C.【点睛】本题考查一元一次不等式的应用,解题的关键是明确题意,列出相应的不等式.2、D【解析】
总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象.从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.【详解】解:A.该校八年级全体学生每天做家庭作业所用的时间是总体,故A不符合题意;B.每个学生每天做家庭作业所用的时间是个体,故B不符合题意;C.从中抽取的120名学生每天做家庭作业所用的时间是一个样本,故C不符合题意;D.样本容量是120,故D符合题意;故选:D.【点睛】考查了总体、个体、样本、样本容量,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.3、C【解析】
由∠ACB角平分线和它的外角的平分线分别交DE于点G和H可得∠HCG=90°,∠ECG=∠ACG即可得HE=EC=EG,再根据A,B,C,D的条件,进行判断.【详解】解:∵∠ACB角平分线和它的外角的平分线分别交DE于点G和H,∴∠HCG=90°,∠ECG=∠ACG;∵DE∥AC.∴∠ACG=∠HGC=∠ECG.∴EC=EG;同理:HE=EC,∴HE=EC=EG=HG;若CH∥BG,∴∠HCG=∠BGC=90°,∴∠EGB=∠EBG,∴BE=EG,∴BE=EG=HE=EC,∴CHBG是平行四边形,且∠HCG=90°,∴CHBG是矩形;故A正确;若BE=CE,∴BE=CE=HE=EG,∴CHBG是平行四边形,且∠HCG=90°,∴CHBG是矩形,故B正确;若HE=EC,则不可以证明四边形BHCG为平行四边形,故C错误;若CH=3,CG=4,根据勾股定理可得HG=5,∴CE=2.5,故D正确.故选C.【点睛】本题考查了矩形的判定,平行四边形的性质和判定,关键是灵活这些判定解决问题.4、D【解析】
根据无理数、有理数的定义即可判定选择项.【详解】解:A、是分数,属于有理数,本选项不符合题意;B、是有限小数,属于有理数,本选项不符合题意;C、是整数,属于有理数,本选项不符合题意;D、=是无理数,本选项不符合题意;故选:D.【点睛】此题主要考查了无理数定义---无理数是无限不循环小数.初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.5、C【解析】
逐项分解判断,即可得到答案.【详解】解:A选项a2+a=a(a+1);B选项=(m+n)(m-n);C选项.不能因式分解;D选项.=(a+3)2.故选C【点睛】本题解题的观念是理解因式分解的概念和常见的因式分解方法,即:把一个多项式化为几个最简整式的乘积的形式,这种变形叫做把这个因式分解(也叫作分解因式).6、C【解析】
根据线段垂直平分线上的点到两端点的距离相等进行解答.【详解】解:垂直平分线上任意一点,到线段两端点的距离相等,到三角形三个顶点的距离相等的点是三角形三边垂直平分线的交点.故选:C.【点睛】本题考查的是线段垂直平分线的性质,熟知垂直平分线上任意一点,到线段两端点的距离相等是解答此题的关键.7、A【解析】试题分析:由边长为3的正方形ABCD绕点A顺时针旋转45°得到正方形AB′C′D′,利用勾股定理的知识求出BC′的长,再根据等腰直角三角形的性质,勾股定理可求BO,OD′,从而可求四边形ABOD′的周长.连接BC′,∵旋转角∠BAB′=45°,∠BAD′=45°,∴B在对角线AC′上,∵B′C′=AB′=3,在Rt△AB′C′中,AC′==3,∴B′C=3﹣3,在等腰Rt△OBC′中,OB=BC′=3﹣3,在直角三角形OBC′中,OC=(3﹣3)=6﹣3,∴OD′=3﹣OC′=3﹣3,∴四边形ABOD′的周长是:2AD′+OB+OD′=6+3﹣3+3﹣3=6考点:(1)旋转的性质;(2)正方形的性质;(3)等腰直角三角形的性质8、C【解析】解:去分母得:x(x+2)﹣(x﹣1)(x+2)=3,整理得:2x﹣x+2=3,解得:x=1,检验:把x=1代入(x﹣1)(x+2)=0,所以分式方程无解.故选C.点睛:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.9、A【解析】
连接CD根据等腰直角三角形的性质就可以得出△ADE≌△CDF,就可以得出AE=CF,进而得出CE=BF,就有AE+BF=AC,由勾股定理就可以求出结论.【详解】连接CD,∵AC=BC,点D为AB中点,∠ACB=90°,
∴AD=CD=BD=AB.∠A=∠B=∠ACD=∠BCD=45°,∠ADC=∠BDC=90°.
∴∠ADE+∠EDC=90°,
∵∠EDC+∠FDC=∠GDH=90°,
∴∠ADE=∠CDF.
在△ADE和△CDF中,∴△ADE≌△CDF(ASA),
∴AE=CF,DE=DF,S△ADE=S△CDF.
∵AC=BC,
∴AC-AE=BC-CF,
∴CE=BF.
∵AC=AE+CE,
∴AC=AE+BF.
∵DE=DF,∠GDH=90°,
∴△DEF始终为等腰直角三角形.
∵CE1+CF1=EF1,
∴AE1+BF1=EF1.
∵S四边形CEDF=S△EDC+S△EDF,
∴S四边形CEDF=S△EDC+S△ADE=S△ABC.
∴正确的有①②③④.
故选A.【点睛】本题考查了等腰直角三角形的性质的运用,全等三角形的判定及性质的运用,勾股定理的运用,解题关键是证明△ADE≌△CDF.10、D【解析】
可将式中的x,y都用3x,3y来表示,再将化简后的式子与原式对比,即可得出答案.【详解】将原式中的x,y分别用3x,3y表示.故选D.【点睛】考查的是对分式的性质的理解,分式中元素扩大或缩小N倍,只要将原数乘以或除以N,再代入原式求解,是此类题目的常见解法.二、填空题(每小题3分,共24分)11、1【解析】
把已知条件代入求值.【详解】解:原式==.故答案是:1.【点睛】直接代入即可,也可先求出a+b、ab的值,原式=(a+b)2﹣2ab,再整体代入.12、1500【解析】
300条鱼里有30条作标记的,则作标记的所占的比例是30÷300=10%,即所占比例为10%.而有标记的共有150条,据此比例即可解答.【详解】150÷(30÷300)=1500(条).故答案为:1500【点睛】本题考查的是通过样本去估计总体.13、901【解析】
解:平均数=,方差=故答案为:90;1.14、11【解析】
根据平移的性质可得到相等的边与角,利用平行线分线段成比例可求出EC,再根据即可得到答案.【详解】解:由平移的性质知,DE=AB=6,HE=DE-DH=5,CF=BE=2,HC∥DF,∠DEF=∠B=90°,∴HE:DE=EC:EF=EC:(EC+CF),即5:6=EC:(EC+2),∴EC=10,EF=EC+CF=10+2=12故答案为:11.【点睛】本题利用了平行线截线段对应成比例和平移的基本性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.15、【解析】
当点P与B重合时,推出△AQK为等腰直角三角形,得出QK的长度,当点M′与D重合时,推出△KQ′M′为等腰直角三角形,得出KQ′的长度,根据题意分析出点Q的运动路径为QK+KQ′,从而得出结果.【详解】解:如图当点M与A重合时,∵∠ABC=45°,∠ANB=90°,PN=MN=CD=3,BN=MN=3,∴此时PB=3-3,∵运动过程中,QM=PB,当点P与B重合时,点M运动到点K,此时点Q在点K的位置,AK即AM的长等于原先PB和AQ的长,即3-3,∴△AQK为等腰直角三角形,∴QK=AQ=3-3,当点M′与D重合时,P′B=BC-P′C=10-3=Q′M′,∵AD=BC-BN=BC-AN=BC-DC=7,KD=AD-AK=7-(3-3)=10-3,Q′M′=BP′=BC-P′C=BC-PN=10-3,∴△KQ′M′为等腰直角三角形,∴KQ′=Q′M′=(10-3)=,当点M从点A平移到点D的过程中,点Q的运动路径长为QK+KQ′,∴QK+KQ′=(3-3)+()=7,故答案为7.【点睛】本题考查平移变换、运动轨迹、解直角三角形等知识,解题的关键是理解题意,学会用转化的思想思考问题,属于中考常考题型.16、1【解析】
连接BE,根据垂直平分线的性质、直角三角形的性质,说明∠CBE=∠F,进一步说明BE=EF,,然后再根据直角三角形中,30°所对的直角边等于斜边的一半即可.【详解】解:如图:连接BE∵AB的垂直平分线DE交BC的延长线于F,∴AE=BE,∠A+∠AED=90°,∵在Rt△ABC中,∠ACB=90°,∴∠F+∠CEF=90°,∵∠AED=∠FEC,∴∠A=∠F=30°,∴∠ABE=∠A=30°,∠ABC=90°﹣∠A=60°,∴∠CBE=∠ABC﹣∠ABE=30°,∴∠CBE=∠F,∴BE=EF,在Rt△BED中,BE=1DE=1×1=1,∴EF=1.故答案为:1.【点睛】本题考查了垂直平分线的性质、直角三角形的性质,其中灵活利用垂直平分线的性质和直角三角形30°角所对的边等于斜边的一半是解答本题的关键.17、【解析】
根据反比例函数中,当反比例函数的系数大于0时,在每一支曲线上,y都随x的增大而减小,可得k-3>0,解可得k的取值范围.【详解】根据题意,在反比例函数图象的每一支曲线上,y都随x的增大而减小,即可得k−3>0,解得k>3.故答案为:k>3【点睛】此题考查反比例函数的性质,解题关键在于当反比例函数的系数大于0时得到k-3>018、()n﹣1【解析】
根据正比例函数的性质得到∠D1OA1=45°,分别求出正方形A1B1C1D1的面积、正方形A2B2C2D2的面积,总结规律解答.【详解】∵直线l为正比例函数y=x的图象,∴∠D1OA1=45°,∴D1A1=OA1=1,∴正方形A1B1C1D1的面积=1=()1﹣1,由勾股定理得,OD1=,D1A2=,∴A2B2=A2O=,∴正方形A2B2C2D2的面积==()2﹣1,同理,A3D3=OA3=,∴正方形A3B3C3D3的面积==()3﹣1,…由规律可知,正方形AnBnCnDn的面积=()n﹣1,故答案为()n﹣1.【点睛】本题考查的是正方形的性质、一次函数图象上点的坐标特征,根据一次函数解析式得到∠D1OA1=45°,正确找出规律是解题的关键.三、解答题(共66分)19、(1)6;(2)x1=,x2=.【解析】
(1)代入后利用完全平方公式计算;(2)用公式法求解.【详解】(1)x2+y2=(+1)2+(−1)2=3+2+3-2=6;(2)a=3,b=2,c=-2,b2-4ac=22-4×3×(-2)=28,x==,即x1=,x2=.【点睛】本题考查了二次根式与一元二次方程,熟练化简二次根式和解一元二次方程是解题的关键.20、(1)4,4;(2)3.6本【解析】(1)生读书数量的众数是4,中位数是4,故答案为4,4;(2)该班学生每月的平均读书数量≈3.6本.21、(1)每件衬衫应降价1元.(2)不可能,理由见解析【解析】
(1)利用衬衣每件盈利×平均每天售出的件数=每天销售这种衬衣利润,列出方程解答即可.
(2)同样列出方程,若方程有实数根则可以,否则不可以.【详解】(1)设每件衬衫应降价x元.
根据题意,得(40-x)(1+2x)=110
整理,得x2-30x+10=0
解得x1=10,x2=1.
∵“扩大销售量,减少库存”,
∴x1=10应略去,
∴x=1.
答:每件衬衫应降价1元.
(2)不可能.理由如下:
令y=(40-x)(1+2x),当y=1600时,(40-x)(1+2x)=1600整理得x2-30x+400=0
∵△=900-4×400<0,方程无实数根.
∴商场平均每天不可能盈利1600元.【点睛】此题主要考查了一元二次方程的应用和根的判别式,利用基本数量关系:平均每天售出的件数×每件盈利=每天销售的利润是解题关键.22、(1)证明见解析;(2)4.8【解析】
(1)由平行四边形的对边平行得∠DAC=∠BCA,由角平分线的性质得∠DAC=∠BAC,即可知∠BCA=∠BAC,从而得AB=BC,即可得证;(2)由菱形的对角线互相垂直且平分得AO=8、BO=6且∠AOB=90°,利用勾股定理得AB=10,根据S△AOB=AB•h=AO•BO即可得答案.【详解】(1)∵平行四边形ABCD,∴AD//BC,∴∠DAC=∠BCA,∵AC平分∠DAB,∴∠CAD=∠BAC,∴∠ACB=∠BAC,∴AB=BC,∴ABCD是菱形;(2)∵四边形ABCD是菱形,AC=16,BD=12,所以AO=8,BO=6,∵∠AOB=90°,∴AB==10,设O点到AB的距离为h,则S△AOB=AB•h=AO•BO,即:×10h=×8×6,解得h=4.8,所以O点到AB的距离为4.8.【点睛】本题考查了平行四边形的性质,菱形的判定与性质及勾股定理,熟练掌握菱形的判定与性质是见本题的关键.23、(1)-19-6;(2)3-.【解析】分析:(1)用平方差公式和完全平方公式计算;(2)把式子中的二次根式都化为最简二次根式后,再加减.详解:(1)()(﹣)﹣(+3)2=7-5-(3+6+18)=-19-6;(2)==3-.点睛:本题考查了二次根式的混合运算,二次根式的混合运算顺序与实数的混合运算顺序一样,先乘方,再乘除,最后加减,有括号时要先算括号里的或先去括号,能够使乘法公式的尽量使用乘法公式.24、(1)行驶普通火车客车所用的时间;(2)见解析.【解析】
(1)根据题意可知x表达的是时间(2)设普通火车
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 中专老师新学期工作计划
- 学生工作计划合集六篇
- 专科毕业实习报告15篇
- 江苏省南京师范大学附属中学树人学校2024-2025学年上学期12月月考九年级数学测试卷(含部分答案)
- 高二语文上学期期末考点大串讲(统编版选择性必修上册+中册)专题03 文言文阅读(知识清单)
- 典型固体废物资源化技术
- 《IABP使用常见问题》课件
- 2024届河南省息县高三下学期三校联考高考一模地理试卷
- 供热企业安全培训
- 《自动控制原理及其应用》全套教学课件
- 重庆特钢市场调研
- 银行服务礼仪标准(PPT94页)课件
- 高压电工作业培训通用PPT课件
- 高电压技术ppt
- 摄影测量学答案
- 圆盘式脚手架产品使用说明书
- 班组民主生活活动记录
- 养护手册桥梁管理
- 家长会家校沟通主题班会
- PPP跟踪审计方案
- 等比数列的前n项和PPT课件
评论
0/150
提交评论