版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东省聊城东阿县联考2024届八年级数学第二学期期末综合测试试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.如图,在ABCD中,AC与BD相交于点O,则下列结论不一定成立的是()A.BO=DO B.CD=AB C.∠BAD=∠BCD D.AC=BD2.下面的统计图表示某体校射击队甲、乙两名队员射击比赛的成绩.根据统计图中的信息可得,下列结论正确的是()A.甲队员成绩的平均数比乙队员的大B.甲队员成绩的方差比乙队员的大C.甲队员成绩的中位数比乙队员的大D.乙队员成绩的方差比甲队员的大3.如图,有两颗树,一颗高10米,另一颗高4米,两树相距8米.一只鸟从一颗树的树梢飞到另一颗树的树梢,问小鸟至少飞行A.8米 B.10米 C.12米 D.14米4.已知:是整数,则满足条件的最小正整数为()A.2 B.3 C.4 D.55.若一个多边形的每个内角都相等,且都为160度,则这个多边形的内角和是()度A.2520 B.2880 C.3060 D.32406.已知一次函数.若随的增大而增大,则的取值范围是()A. B. C. D.7.如图,在▱ABCD中,E为边CD上一点,将△ADE沿AE折叠至△AD′E处,AD′与CE交于点F,若∠B=52°,∠DAE=20°,则∠AED′的大小为()A.110° B.108° C.105° D.100°8.如图,在矩形中,,,过对角线交点作交于点,交于点,则的长是()A.1 B. C.2 D.9.函数的自变量的取值范围是()A. B. C. D.10.下列多项式中,能用完全平方公式分解因式的是()A.x2﹣x+1 B.1﹣2xy+x2y2 C.m2﹣2m﹣1 D.二、填空题(每小题3分,共24分)11.如图,在矩形ABCD中,AB=8,BC=10,E是AB上的一点,将矩形ABCD沿CE折叠后,点B落在AD边的点F上,则AE的长为_________.12.若在平行四边形ABCD中,∠A=30°,AB=9,AD=8,则四边形ABCD=_____.13.某种药品原价75元盒,经过连续两次降价后售价为45元/盒.设平均每次降价的百分率为x,根据题意可列方程为_____.14.如图,一次函数的图象与x轴、y轴分别交于点A、B,将沿直线AB翻折得到,连接OC,那么线段OC的长为______.15.弹簧原长(不挂重物)15cm,弹簧总长L(cm)与重物质量x(kg)的关系如下表所示:弹簧总长L(cm)1617181920重物质量x(kg)0.51.01.52.02.5当重物质量为4kg(在弹性限度内)时,弹簧的总长L(cm)是_________.16.将直线平移后经过点(5,),则平移后的直线解析式为______________.17.若二次根式有意义,则x的取值范围是________.18.已知矩形的长a=,宽b=,则这个矩形的面积是_____.三、解答题(共66分)19.(10分)如图甲,在等边三角形ABC内有一点P,且PA=2,PB=,PC=1,求∠BPC度数的大小和等边三角形ABC的边长.解题思路是:将△BPC绕点B逆时针旋转60°,如图乙所示,连接PP′.(1)△P′PB是三角形,△PP′A是三角形,∠BPC=°;(2)利用△BPC可以求出△ABC的边长为.如图丙,在正方形ABCD内有一点P,且PA=,BP=,PC=1;(3)求∠BPC度数的大小;(4)求正方形ABCD的边长.20.(6分)我们定义:如图1、图2、图3,在△ABC中,把AB绕点A顺时针旋转α(0°<α<180°)得到AB′,把AC绕点A逆时针旋转β得到AC′,连接B′C′,当α+β=180°时,我们称△AB'C′是△ABC的“旋补三角形”,△AB′C′边B'C′上的中线AD叫做△ABC的“旋补中线”,点A叫做“旋补中心”.图1、图2、图3中的△AB′C′均是△ABC的“旋补三角形”.(1)①如图2,当△ABC为等边三角形时,“旋补中线”AD与BC的数量关系为:AD=BC;②如图3,当∠BAC=90°,BC=8时,则“旋补中线”AD长为.(2)在图1中,当△ABC为任意三角形时,猜想“旋补中线”AD与BC的数量关系,并给予证明.21.(6分)先化简,再求值:,其中x是不等式组的整数解.22.(8分)如图,在平面直角坐标系中,直线y=2x+4与x轴交于点A,与y轴交于点B,过点B的直线交x轴于C,且△ABC面积为1.(1)求点C的坐标及直线BC的解析式;(2)如图1,设点F为线段AB中点,点G为y轴上一动点,连接FG,以FG为边向FG右侧作正方形FGQP,在G点的运动过程中,当顶点Q落在直线BC上时,求点G的坐标;(3)如图2,若M为线段BC上一点,且满足S△AMB=S△AOB,点E为直线AM上一动点,在x轴上是否存在点D,使以点D,E,B,C为顶点的四边形为平行四边形?若存在,请直接写出点D的坐标;若不存在,请说明理由.23.(8分)如图,四边形ABCD是正方形,G是BC上任意一点(点G与B、C不重合),AE⊥DG于E,CF∥AE交DG于F.请你经过观察、猜测线段FC、AE、EF之间是否存在一定的数量关系?若存在,证明你的结论;若不存在,请说明理由.24.(8分)先化简,再求值:其中a=1.25.(10分)如图,在平行四边形ABCD中,DB=DC,AE⊥BD于点E.若,求的度数.26.(10分)如图,是一块四边形绿地的示意图,其中AB长为24米,BC长15米,CD长为20米,DA长7米,∠C=90°,求绿地ABCD的面积.
参考答案一、选择题(每小题3分,共30分)1、D【解析】试题分析:根据平行四边形的性质判断即可:A、∵四边形ABCD是平行四边形,∴OB=OD(平行四边形的对角线互相平分),正确,不符合题意;B、∵四边形ABCD是平行四边形,∴CD=AB(平行四边形的对边相等),正确,不符合题意;C、∵四边形ABCD是平行四边形,∴∠BAD=∠BCD(平行四边形的对角相等),正确,不符合题意;D、根据四边形ABCD是平行四边形不能推出AC=BD,错误,符合题意.故选D.2、B【解析】
根据平均数的公式:平均数=所有数之和再除以数的个数;方差就是各变量值与其均值离差平方的平均数,根据方差公式计算即可;中位数就是最中间的数或最中间两个数的平均数.【详解】解:(1)甲队员10次射击的成绩分别为6,7、7,7,1,1,9,9,9,10;
甲10次射击成绩的平均数=(6+3×7+2×1+3×9+10)÷10=1,
方差=[(6-1)2+3×(7-1)2+2×(1-1)3+3×(9-1)2+(10-1)2]=1.4;中位数:1.(2)乙队员9次射击的成绩分别为6,7,7,1,1,1,9,9,10;
乙9次射击成绩的平均数=(6+2×7+3×1+2×9+10)÷9=1,
方差=[(6-1)2+2×(7-1)2+3×(1-1)3+2×(9-1)2+(10-1)2]≈1.3;中位数:1.两者平均数和中位数相等,甲的方差比乙大.故选B.【点睛】本题考查平均数、方差的定义和公式;熟练掌握平均数和方差的计算是解决问题的关键.3、B【解析】
试题分析:根据“两点之间线段最短”可知:小鸟沿着两棵树的树梢进行直线飞行,所行的路程最短,运用勾股定理可将两点之间的距离求出.如图,设大树高为AB=10米,小树高为CD=4米,过C点作CE⊥AB于E,则EBDC是矩形,连接AC,∴EB=4米,EC=8米,AE=AB﹣EB=10﹣4=6米,在Rt△AEC中,(米).故选B.4、D【解析】试题解析:∵=,且是整数,∴2是整数,即1n是完全平方数,∴n的最小正整数为1.故选D.点睛:主要考查了乘除法法则和二次根式有意义的条件.二次根式有意义的条件是被开方数是非负数.二次根式的运算法则:乘法法则.除法法则.解题关键是分解成一个完全平方数和一个代数式的积的形式.5、B【解析】
n边形的内角和是(n-2)180°,由此列方程求解.【详解】设这个多边形的边数为n,则(n-2)180°=160°n,解得,n=18.则(n-2)180°=(18-2)×180°=2880°.故选B.【点睛】本题主要考查了多边形的内角和,n边形的内角和是(n-2)180°.6、B【解析】
∵随的增大而增大,∴,,故选B.7、B【解析】
由平行四边形的性质可得∠B=∠D=52°,由三角形的内角和定理可求∠DEA的度数,由折叠的性质可求∠AED'=∠DEA=108°.【详解】∵四边形ABCD是平行四边形,∴∠B=∠D=52°,且∠DAE=20°,∴∠DEA=180°﹣∠D=∠DAE=108°,∵将△ADE沿AE折叠至△AD′E处,∴∠AED'=∠DEA=108°.故选:B.【点睛】本题主要考查平行四边形的性质,三角形的内角和定理以及折叠的性质,掌握折叠的性质是解题的关键.8、B【解析】
连接,由矩形的性质得出,,,,由线段垂直平分线的性质得出,设,则,在中,由勾股定理得出方程,解方程即可.【详解】如图:连接,∵四边形是矩形,∴,,,,∵,∴,设,则,在中,由勾股定理得:,解得:,即;故选B.【点睛】本题考查了矩形的性质、线段垂直平分线的性质、勾股定理;熟练掌握矩形的性质,由勾股定理得出方程是解题的关键.9、B【解析】
根据分母为零无意义,可得答案.【详解】解:由题意,得,解得,故选:B.【点睛】本题考查了函数自变量的取值范围,利用分母不等于零得出不等式是解题关键.10、B【解析】
利用完全平方公式的结构特征判断即可.【详解】解:选项中的4个多项式中,能用完全平方公式分解因式的是1-2xy+x2y2=(1-xy)2,
故选B.【点睛】此题考查了因式分解-运用公式法,熟练掌握完全平方公式是解本题的关键.二、填空题(每小题3分,共24分)11、1【解析】
首先求出DF的长度,进而求出AF的长度;根据勾股定理列出关于线段AE的方程即可解决问题.【详解】设AE=x,由题意得:FC=BC=10,BE=EF=8-x;∵四边形ABCD为矩形,∴∠D=90°,DC=AB=8,由勾股定理得:DF2=102-82=16,∴DF=6,AF=10-6=4;由勾股定理得:EF2=AE2+AF2,即(8-x)2=x2+42解得:x=1,即AE=1.故答案为:1.【点睛】该命题以正方形为载体,以翻折变换为方法,以考查勾股定理、全等三角形的性质为核心构造而成;解题的关键是灵活运用有关定理来分析、判断或解答.12、36【解析】
根据题意作出图形,再根据平行四边形及含30°的直角三角形的性质进行求解.【详解】解:如图,过点D作DE⊥AB于点E,∵∠A=30°,DE⊥AB∴DE=AD=4∴S▱ABCD=BA×DE=9×4=36故答案为36【点睛】此题主要考查平行四边形的计算,解题的关键是作出图形求出DE.13、【解析】
可先表示出第一次降价后的价格,那么第一次降价后的价格×(1-降低的百分率)=1,把相应数值代入即可求解.【详解】解:第一次降价后的价格为75×(1-x),两次连续降价后售价在第一次降价后的价格的基础上降低x,为:
75×(1-x)×(1-x),
则列出的方程是75(1-x)2=1.
故答案为75(1-x)2=1.【点睛】此题考查由实际问题抽象出一元二次方程中求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.14、.【解析】
利用一次函数图象上点的坐标特征求得点A、B的坐标,易得线段AB的长度,然后利用面积法求得OD的长度,结合翻折图形性质得到.【详解】解:如图,设直线OC与直线AB的交点为点D,一次函数的图象与x轴、y轴分别交于点A、B,、,,,,将沿直线AB翻折得到,,,.故答案是:.【点睛】考查了一次函数图象与几何变换,此题将求线段OC的长度转换为求直角三角形AOB斜边上高的问题,降低了题目的难度.15、1【解析】
根据表格数据,建立数学模型,进而利用待定系数法可得函数关系式,当x=4时,代入函数解析式求值即可.【详解】解:设弹簧总长L(cm)与重物质量x(kg)的关系式为L=kx+b,
将(0.5,16)、(1.0,17)代入,得:,
解得:,
∴L与x之间的函数关系式为:L=2x+15;
当x=4时,L=2×4+15=1(cm)
故重物为4kg时弹簧总长L是1cm,
故答案为1.【点睛】吧本题考查根据实际问题列一次函数关系式,解题的关键是得到弹簧长度的关系式.16、y=2x-1【解析】
根据平移不改变k的值可设平移后直线的解析式为y=2x+b,然后将点(5,1)代入即可得出直线的函数解析式.【详解】解:设平移后直线的解析式为y=2x+b.
把(5,1)代入直线解析式得1=2×5+b,
解得
b=-1.
所以平移后直线的解析式为y=2x-1.
故答案为:y=2x-1.【点睛】本题考查一次函数图象与几何变换及待定系数法求函数的解析式,掌握直线y=kx+b(k≠0)平移时k的值不变是解题的关键.17、【解析】
根据二次根式有意义的条件可得-x≥0,再解不等式即可.解答【详解】由题意得:-x⩾0,解得:,故答案为:.【点睛】此题考查二次根式有意义的条件,解题关键在于掌握其定义.18、1【解析】
根据矩形的面积公式列出算式,根据二次根式的乘法法则计算,得到答案.【详解】矩形的面积=ab=×=×1××3=1,故答案为:1.【点睛】本题考查的是二次根式的应用,掌握二次根式的乘法法则是解题的关键.三、解答题(共66分)19、(1)等边直角150°;(2);(3)135°;(4).【解析】
(1)将△BPC绕点B顺时针旋转60°,画出旋转后的图形(如图2),连接PP′,可得△P′PB是等边三角形,而△PP′A又是直角三角形(由勾股定理的逆定理可证),所以∠AP′B=150°,而∠BPC=∠AP′B=150°,(2)过点B作BM⊥AP′,交AP′的延长线于点M,进而求出等边△ABC的边长为,问题得到解决.(3)求出,根据勾股定理的逆定理求出∠AP′P=90°,推出∠BPC=∠AEB=90°+45°=135°;(4)过点B作BF⊥AE,交AE的延长线于点F,求出FE=BF=1,AF=2,关键勾股定理即可求出AB.【详解】解:(1)∵△ABC是等边三角形,∴∠ABC=60°,将△BPC绕点B顺时针旋转60°得出△ABP′,∴∵∠PBC+∠ABP=∠ABC=60°,∴∠ABP′+∠ABP=∠ABC=60°,∴△BPP′是等边三角形,∴∵AP′=1,AP=2,∴AP′2+PP′2=AP2,∴∠AP′P=90°,则△PP′A是直角三角形;∴∠BPC=∠AP′B=90°+60°=150°;(2)过点B作BM⊥AP′,交AP′的延长线于点M,∴由勾股定理得:∴由勾股定理得:故答案为(1)等边;直角;150;;(3)将△BPC绕点B逆时针旋转90°得到△AEB,与(1)类似:可得:AE=PC=1,BE=BP=,∠BPC=∠AEB,∠ABE=∠PBC,∴∠EBP=∠EBA+∠ABP=∠ABC=90°,∴,由勾股定理得:EP=2,∵∴AE2+PE2=AP2,∴∠AEP=90°,∴∠BPC=∠AEB=90°+45°=135°;(4)过点B作BF⊥AE,交AE的延长线于点F;∴∠FEB=45°,∴FE=BF=1,∴AF=2;∴在Rt△ABF中,由勾股定理,得AB=;∴∠BPC=135°,正方形边长为.答:(3)∠BPC的度数是135°;(4)正方形ABCD的边长是.【点睛】本题主要考查对勾股定理及逆定理,等边三角形的性质和判定,等腰三角形的性质,含30度角的直角三角形的性质,正方形的性质,旋转的性质等知识点的理解和掌握,正确作辅助线并能根据性质进行证明是解此题的关键.20、(1)①;②1;(2)AD=BC.【解析】
(1)①首先证明△ADB'是含有30°的直角三角形,可得ADAB'即可解决问题;②首先证明△BAC≌△B'AC',根据直角三角形斜边中线定理即可解决问题;(2)结论:ADBC.如图1中,延长AD到M,使得AD=DM,连接B'M,C'M,首先证明四边形AC'MB'是平行四边形,再证明△BAC≌△AB'M,即可解决问题.【详解】(1)①如图2中,∵△ABC是等边三角形,∴AB=BC=AC=AB'=AC'.∵DB'=DC',∴AD⊥B'C'.∵∠BAC=60°,∠BAC+∠B'AC'=180°,∴∠B'AC'=120°,∴∠B'=∠C'=30°,∴ADAB'BC.故答案为.②如图3中,∵∠BAC=90°,∠BAC+∠B'AC'=180°,∴∠B'AC'=∠BAC=90°.∵AB=AB',AC=AC',∴△BAC≌△B'AC',∴BC=B'C'.∵B'D=DC',∴ADB'C'BC=1.故答案为1.(2)结论:ADBC.理由:如图1中,延长AD到M,使得AD=DM,连接B'M,C'M.∵B'D=DC',AD=DM,∴四边形AC'MB'是平行四边形,∴AC'=B'M=AC.∵∠BAC+∠B'AC'=180°,∠B'AC'+∠AB'M=180°,∴∠BAC=∠MB'A.∵AB=AB',∴△BAC≌△AB'M,∴BC=AM,∴ADBC.【点睛】本题是四边形综合题,主要考查了全等三角形的判定和性质、平行四边形的判定和性质、直角三角形30度角性质、等边三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.21、-1【解析】
先利用分式运算规则进行化简,解出不等式得到x的取值,要注意x的取值是不能使前面分式分母为0【详解】∵,∴解得:﹣3<x≤,∴整数解为﹣2,﹣1,0,根据分式有意义的条件可知:x=0,∴原式=【点睛】本题考查分式的化简与求值,本题关键在于解出不等式之后取x值时,需要注意不能使原分式分母为022、(1)C(3,0),直线BC的解析式为y=﹣43x+4;(2)满足条件的点G坐标为(0,237)或(0,﹣1);(3)存在,满足条件的点D的坐标为(193,0)或(﹣13,0)或(﹣【解析】
(1)利用三角形的面积公式求出点C坐标,再利用待定系数法即可解决问题.(2)分两种情形:①当n>2时,如图2-1中,点Q落在BC上时,过G作直线平行于x轴,过点F,Q作该直线的垂线,垂足分别为M,N.求出Q(n-2,n-1).②当n<2时,如图2-2中,同法可得Q(2-n,n+1),利用待定系数法即可解决问题.(3)利用三角形的面积公式求出点M的坐标,求出直线AM的解析式,作BE//OC交直线AM于E,此时E(103,4),当CD=BE时,可得四边形BCDE,四边形BECD1是平行四边形,可得D(193,0),【详解】解:(1)∵直线y=2x+4与x轴交于点A,与y轴交于点B,∴A(-2,0),B(0,4),∴OA=2,OB=4,∵S∴AC=5,∴OC=3,∴C(3,0),设直线B的解析式为y=kx+b,则有3k+b=0b=4∴k=-∴直线BC的解析式为y=-4(2)∵FA=FB,A(-2,0),B(0,4),∴F(-1,2),设G(0,n),①当n>2时,如图2-1中,点Q落在BC上时,过G作直线平行于x轴,过点F,Q作该直线的垂线,垂足分别为M,N.∵四边形FGQP是正方形,易证ΔFMG≅ΔGNQ,∴MG=NQ=1,FM=GN=n-2,∴Q(n-2,n-1),∵点Q在直线y=-4∴n-1=-4∴n=23∴G(0,23②当n<2时,如图2-2中,同法可得Q(2-n,n+1),∵点Q在直线y=-4∴n+1=-4∴n=-1,∴G(0,-1).综上所述,满足条件的点G坐标为(0,237)(3)如图3中,设M(m,-4∵S∴S∴1∴m=6∴M(65,∴直线AM的解析式为y=3作BE//OC交直线AM于E,此时E(103,当CD=BE时,可得四边形BCDE,四边形BECD1是平行四边形,可得D(193,0),根据对称性可得点D关于点A的对称点D2(-31综上所述,满足条件的点D的坐标为(193,0)或(-13,0)或【点睛】本题
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 个人房屋装修合同及清单正式版
- 2024年度数据中心劳务施工合同解读
- 2024年度新能源汽车电池采购与回收合同3篇
- 2024年度城市公共服务合同公共设施建设与运营管理
- 二零二四年度农庄农业废弃物处理合同
- 2024年度汽车配件企业战略合作与联盟合同3篇
- 2024年度仓库租赁合同:冷链物流与存储服务
- 2024年度企业咨询服务与解决方案承包合同2篇
- 合股出资合同范本
- 临床三基三严培训
- 试剂售后的承诺书(3篇)
- 六年级计算题 分数混合运算专项练习430题
- 2024年度中国主要城市通勤监测报告-中规智库
- 七年级历史上册知识点归纳(2024)-2024-2025学年七年级历史上册
- 校园监控系统设计方案
- 天津市勘察设计院集团有限公司招聘笔试题库2024
- DB50T741-2016 山羊种羊场建设技术规范
- 幼教培训课件:《幼儿园主题墙的创设》
- 2024-2030年中国证券融资融券行业发展趋势及未来前景规划报告
- 店铺销售技巧与话术训练考核试卷
- 城乡供水一体化项目小沔至狮滩等段供水管网连通改造工程初步设计报告
评论
0/150
提交评论