版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024年安徽省芜湖市数学八年级下册期末预测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每题4分,共48分)1.下列运算错误的是()A. B.C. D.2.甲、乙两个车站相距96千米,快车和慢车同时从甲站开出,1小时后快车在慢车前12千米,快车比慢车早40分钟到达乙站,快车和慢车的速度各是多少?设快车的速度为x千米/时,则下列方程正确的是()A.-= B.-=40C.-= D.-=403.已知△ABC的边长分别为5,7,8,则△ABC的面积是()A.20 B.10 C.10 D.284.如图,已知正方形面积为36平方厘米,圆与各边相接,则阴影部分的面积是()平方厘米.()A.18 B.7.74 C.9 D.28.265.在中,,则的值是()A.12 B.8 C.6 D.36.若将0.0000065用科学记数法表示为6.5×10n,则n等于()A.﹣5 B.﹣6 C.﹣7 D.﹣87.如果把分式中的和都扩大3倍,那么分式的值()A.扩大3倍 B.缩小3倍C.缩小6倍 D.不变8.以下列各组数为边长能构成直角三角形的是()A.6,12,13 B.3,4,7 C.8,15,16 D.5,12,139.一个四边形,对于下列条件:①一组对边平行,一组对角相等;②一组对边平行,一条对角线被另一条对角线平分;③一组对边相等,一条对角线被另一条对角线平分;④两组对角的平分线分别平行,不能判定为平行四边形的是()A.① B.② C.③ D.④10.抛物线y=x2﹣4x+5的顶点坐标是()A.(2,1) B.(﹣2,1) C.(2,5) D.(﹣2,5)11.若点,都在反比例函数的图象上,则与的大小关系是A. B. C. D.无法确定12.四边形的内角和为()A.180° B.360° C.540° D.720°二、填空题(每题4分,共24分)13.如图,以的两条直角边分别向外作等腰直角三角形.若斜边,则图中阴影部分的面积为_____.14.如果一个n边形的内角和等于它的外角和的3倍,则n=______.15.因式分解:m2n+2mn2+n3=_____.16.小明用四根长度相同的木条制作了能够活动的菱形学具,他先活动学具成为图1所示菱形,并测得,接着活动学具成为图2所示正方形,并测得正方形的对角线,则图1中对角线AC的长为_____.17.现有甲、乙两支篮球队,每支球队队员身高的平均数均为1.85米,方差分别为,,则身高较整齐的球队是_______队.18.如图所示,在菱形中,对角线与相交于点.OE⊥AB,垂足为,若,则的大小为____________.三、解答题(共78分)19.(8分)先化简,再求代数式的值,其中20.(8分)求证:有一组对边平行,和一组对角相等的四边形是平行四边形.(请画出图形,写出已知、求证并证明)21.(8分)如图(1),公路上有A、B、C三个车站,一辆汽车从A站以速度v1匀速驶向B站,到达B站后不停留,以速度v2匀速驶向C站,汽车行驶路程y(千米)与行驶时间x(小时)之间的函数图象如图(2)所示.(1)当汽车在A、B两站之间匀速行驶时,求y与x之间的函数关系式及自变量的取值范围;(2)求出v2的值;(3)若汽车在某一段路程内刚好用50分钟行驶了90千米,求这段路程开始时x的值.22.(10分)如图,小刚想知道学校旗杆的高度,他发现旗杆顶端A处的绳子垂到地面B处后还多2米当他把绳子拉直并使下端刚好接触到地面C处,发现绳子下端到旗杆下端的距离为6米,请你帮小刚求出旗杆的高度AB长.23.(10分)如图,点D是△ABC内一点,点E,F,G,H分别是AB,AC,CD,BD的中点。(1)求证:四边形EFGH是平行四边形;(2)已知AD=6,BD=4,CD=3,∠BDC=90°,求四边形EFGH的周长。24.(10分)“机动车行驶到斑马线要礼让行人”等交通法规实施后,某校数学课外实践小组就对这些交通法规的了解情况在全校随机调査了部分学生,调查结果分为五种:A非常了解,B比较了解,C基本了解,D不太了解,E完全不知.实践小组把此次调查结果整理并绘制成下面不完整的条形统计图和扇形统计图请根据以上信息,解答下列问题:(1)本次共调查了名学生,扇形统计图中D所对应扇形的圆心角为度;(2)把这幅条形统计图补充完整(画图后请标注相应的数据);(3)该校共有800名学生,根据以上信息,请你估计全校学生中对这些交通法规“非常了解”的有名.25.(12分)解分式方程:(1);(2).26.因式分解:(1);(2).
参考答案一、选择题(每题4分,共48分)1、A【解析】
根据二次根式的乘法法则和二次根式的性质逐个判断即可.【详解】解:A、,故本选项符合题意;B、,故本选项不符合题意;C、,故本选项不符合题意;D、,故本选项不符合题意;故选:A.【点睛】本题考查了二次根式的乘除和二次根式的性质,能灵活运用二次根式的乘法法则进行化简是解此题的关键,注意.2、C【解析】分析:根据快车的速度为x千米/小时得出慢车的速度为(x-12)千米/小时,然后根据慢车的时间减去快车的时间等于小时得出答案.详解:根据题意可得:慢车的速度为(x-12)千米/小时,根据题意可得:,故选C.点睛:本题主要考查的是分式方程的应用,属于基础题型.解决这个问题的时候我们还需要注意单位的统一.3、C【解析】
过A作AD⊥BC于D,根据勾股定理列方程得到BD,然后根据三角形的面积公式即可得到结论.【详解】如图,∵AB=5,AC=7,BC=8,过A作AD⊥BC于D,∴AB2-BD2=AC2-CD2=AD2,∴52-BD2=72-(8-BD)2,解得:BD=,∴AD=,∴△ABC的面积=10,故选C.【点睛】本题考查了勾股定理,三角形的面积的计算,熟练掌握勾股定理是解题的关键.4、B【解析】【分析】先求正方形的边长,可得圆的半径,再用正方形的面积减去圆的面积即可.【详解】因为6×6=36,所以正方形的边长是6厘米36-3.14×(6÷2)2=36-28.26=7.74(平方厘米)故选:B【点睛】本题考核知识点:正方形性质.解题关键点:理解正方形基本性质.5、C【解析】
证明△ABC是等边三角形即可解决问题.【详解】解:∵AB=AC,∠A=60°,∴△ABC是等边三角形,∴AB=BC=6,故选:C.【点睛】本题考查等边三角形的判定和性质,解题的关键是熟练掌握基本知识,属于中考常考题型.6、B【解析】
绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.0000065=6.5×10﹣6,则n=﹣6,故选:B.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.7、D【解析】
将x,y用3x,3y代入化简,与原式比较即可.【详解】解:将x,y用3x,3y代入得=,故值不变,答案选D.【点睛】本题考查分式的基本性质,熟悉掌握是解题关键.8、D【解析】解:A.62+122≠132,不能构成直角三角形.故选项错误;B.32+42≠72,不能构成直角三角形.故选项错误;C.82+152≠162,不能构成直角三角形.故选项错误;D.52+122=132,能构成直角三角形.故选项正确.故选D.9、C【解析】
根据平行四边形的判定方法依次分析各小题即可作出判断.【详解】解:①一组对边平行,一组对角相等,②一组对边平行,一条对角线被另一条对角线平分,④两组对角的平分线分别平行,均能判定为平行四边形③一组对边相等,一条对角线被另一条对角线平分,不能判定为平行四边形故选C.【点睛】本题考查了平行四边形的判定和性质,熟练掌握性质定理是解题的关键.10、A【解析】
先把抛物线的解析式配成顶点式得到y=(x﹣2)2+1,然后根据抛物线的性质即可求解.【详解】∵y=x2﹣4x+5=(x﹣2)2+1,∴抛物线的顶点坐标为(2,1).故选A.【点睛】本题考查了二次函数的性质,二次函数y=a(x-h)2+k的顶点坐标为(h,k),对称轴为x=h,本题还考查了利用配方法化二次函数的一般式化为顶点式.11、A【解析】
把所给点的横纵坐标代入反比例函数的解析式,求出、的值,比较大小即可.【详解】点在反比例函数的图象上,,点在反比例函数的图象上,,.故选:.【点睛】本题主要考查反比例函数图象上点的坐标特征,所有在反比例函数上的点的横纵坐标的积等于比例系数.12、B【解析】
解:四边形的内角和=(4-2)•180°=360°故选B.二、填空题(每题4分,共24分)13、【解析】
根据勾股定理和等腰直角三角形的面积公式,即可得到结论.【详解】解:在Rt△ABC中,AB2=AC2+BC2,AB=5,
S阴影=(AC2+BC2)=×25=,
故答案为.【点睛】本题考查了勾股定理的知识,要求能够运用勾股定理证明三个等腰直角三角形的面积之间的关系.14、1【解析】
根据多边形内角和公式110°(n-2)和外角和为360°可得方程110(n-2)=360×3,再解方程即可.【详解】解:由题意得:110(n-2)=360×3,解得:n=1,故答案为:1.【点睛】此题主要考查了多边形内角和与外角和,要结合多边形的内角和公式与外角和的关系来寻求等量关系,构建方程即可求解.15、n(m+n)1【解析】
先提公因式n,再利用完全平方公式分解因式即可.【详解】解:m1n+1mn1+n3=n(m1+1mn+n1)=n(m+n)1.故答案为:n(m+n)1【点睛】此题考查提公因式法与公式法的综合运用,解题关键在于掌握运算法则.16、【解析】
如图1,2中,连接.在图2中,利用勾股定理求出,在图1中,只要证明是等边三角形即可解决问题.【详解】解:如图1,2中,连接.在图2中,四边形是正方形,,,∵,cm,在图1中,四边形ABCD是菱形,,,是等边三角形,cm,故答案为:.【点睛】本题考查菱形的性质、正方形的性质、勾股定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.17、甲【解析】
根据方差的意义解答.方差,通俗点讲,就是和中心偏离的程度,用来衡量一批数据的波动大小(即这批数据偏离平均数的大小).在样本容量相同的情况下,方差越大,说明数据的波动越大,越不稳定.【详解】∵<,∴身高较整齐的球队是甲队。故答案为:甲.【点睛】此题考查极差、方差与标准差,解题关键在于掌握其性质.18、65°【解析】
先根据菱形的邻角互补求出∠BAD的度数,再根据菱形的对角线平分一组对角求出∠BAO的度数,然后根据直角三角形两锐角互余列式计算即可得解.【详解】在菱形ABCD中,∠ADC=130°,∴∠BAD=180°﹣130°=50°,∴∠BAO∠BAD50°=25°.∵OE⊥AB,∴∠AOE=90°﹣∠BAO=90°﹣25°=65°.故答案为65°.【点睛】本题考查了菱形的邻角互补,每一条对角线平分一组对角的性质,直角三角形两锐角互余的性质,熟练掌握性质是解题的关键.三、解答题(共78分)19、原式=【解析】分析:首先将分式的分子和分母进行因式分解,然后根据分式的除法和减法计算法则进行化简,最后将a的值代入化简后的式子得出答案.详解:解:===,当时,=.点睛:本题主要考查的是分式的化简求值问题,属于基础题型.在分式化简的时候一定要注意因式分解的方法.20、证明见解析.【解析】
已知条件的基础上,根据平行四边形的判定方法,只需证明另一组对边平行或另一组对角相等.【详解】已知:如图,四边形ABCD中,AB∥CD,∠A=∠C.求证:四边形ABCD是平行四边形.证明:∵AB∥CD,∴∠A+∠D=180°,∠B+∠C=180°,∵∠A=∠C,∴∠B=∠D,∴四边形ABCD是平行四边形.21、(1)y=100x,(0<x<3);(2)120千米/小时;(3)这段路程开始时x的值是2.5小时.【解析】
(1)根据函数图象设出一次函数解析式,运用待定系数法求出解析式即可;
(2)根据距离÷时间=速度计算;
(3)设汽车在A、B两站之间匀速行驶x小时,根据题意列出方程,解方程即可.【详解】(1)根据图象可设汽车在A、B两站之间匀速行驶时,y与x之间的函数关系式为y=kx,∵图象经过(1,100),∴k=100,∴y与x之间的函数关系式为y=100x,(0<x<3);(2)当y=300时,x=3,4﹣3=1小时,420﹣300=120千米,∴v2=120千米/小时;(3)设汽车在A、B两站之间匀速行驶x小时,则在汽车在B、C两站之间匀速行驶(﹣x)小时,由题意得,100x+120(﹣x)=90,解得x=0.5,3﹣0.5=2.5小时.答:这段路程开始时x的值是2.5小时.点睛:本题考查的是一次函数的应用,正确读懂函数图象、从中获取正确的信息、掌握待定系数法求函数解析式的步骤是解题的关键,解答时,注意方程思想的灵活运用.22、旗杆的高度为8米【解析】
因为旗杆、绳子、地面正好构成直角三角形,设旗杆的高度为x米,则绳子的长度为米,根据勾股定理即可求得旗杆的高度.【详解】设旗杆的高度为x米,则绳子的长度为米,根据勾股定理可得:,解得,.答:旗杆的高度为8米.【点睛】此题考查了学生利用勾股定理解决实际问题的能力,解答本题的关键是用未知数表示出三边长度,利用勾股定理解答.23、(1)见解析;(2)周长为:11.【解析】
(1)根据三角形的中位线的定理和平行四边形的判定即可解答;(2)利用勾股定理列式求出BC的长,再根据三角形的中位线平行于第三边并且等于第三边的一半求出EH=FG=AD,EF=GH=BC,然后代入数据进行计算即可得解.【详解】(1)证明:∵点E,F分别是AB,AC的中点,∴EF是△ABC的中位线,∴EF∥BC且EF=BC;又∵点H,G分别是BD,CD的中点,∴HG是△BCD的中位线,∴HG∥BC且HG=BC;∴EF∥HG且EF=HG,∴四边形EFGH是平行四边形.(2)∵点E,H分别是AB,BD的中点,∴EH是△ABD的中位线,∴EH=AD=3;∵∠BDC=90°,∴△BCD是直角三角形;在Rt△BCD中,CD=3,BD=4,∴由勾股定理得:BC=5;∵HG=BC,∴HG=;由(1)知,四边形EFGH是平行四边形,∴周长为2EH+2HG=11.【点睛】本题考查了三角形中位线定理,勾股定理,掌握三角形中位线定理,勾股定理是解决问题的关键.24、(1)300;54;(2)条形统计图补充见
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 个人房屋装修合同及清单正式版
- 2024年度数据中心劳务施工合同解读
- 2024年度新能源汽车电池采购与回收合同3篇
- 2024年度城市公共服务合同公共设施建设与运营管理
- 二零二四年度农庄农业废弃物处理合同
- 2024年度汽车配件企业战略合作与联盟合同3篇
- 2024年度仓库租赁合同:冷链物流与存储服务
- 2024年度企业咨询服务与解决方案承包合同2篇
- 合股出资合同范本
- 临床三基三严培训
- 吊篮作业安全措施
- 《思想道德与法治》2021版第四章
- 精神分裂症的规范化治疗讲课课件
- 2023年全国高考英语全国1卷(试题+答案)
- 现金流量表分析-课件
- 2022年淄博市公需课答案
- 学校网评员工作职责
- 狱内又犯罪概念和特点
- C++面试题、c++面试题
- 曾国藩为人识人及用人
- (2021年)浙江省杭州市警察招考公安专业科目真题(含答案)
评论
0/150
提交评论