版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河北省沧州市黄骅市2024年八年级数学第二学期期末学业质量监测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每小题3分,共30分)1.某商品四天内每天每斤的进价与售价信息如图所示,则售出这种商品每斤利润最大的是()A.第一天 B.第二天 C.第三天 D.第四天2.如图,矩形ABCD边AD沿折痕AE折叠,使点D落在BC上的F处,已知AB=6,△ABF的面积是24,则FC等于()A.1 B.2 C.3 D.43.若m>n,下列不等式不一定成立的是()A.m+2>n+2 B.2m>2n C.> D.m2>n24.把直线a沿水平方向平移4cm,平移后的像为直线b,则直线a与直线b之间的距离为()A.等于4cm B.小于4cmC.大于4cm D.小于或等于4cm5.如图,在平行四边形ABCD中,BC=2AB,CE⊥AB于E,F为AD的中点,若∠AEF=54°,则∠B=()A.54° B.60° C.66° D.72°6.若a为有理数,且满足|a|+a=0,则()A.a>0 B.a≥0 C.a<0 D.a≤07.做抛掷两枚硬币的实验,事件“一正一反”的“频率”的值正确的是()A.0 B.约为 C.约为 D.约为18.一次函数y=kx+b的图象经过第一、三、四象限,则()A.k>0,b>0 B.k>0,b<0 C.k<0,b>0 D.k<0,b<09.在长度为1的线段上找到两个黄金分割点P,Q,则PQ=()A. B. C. D.10.如图,在正方形中,点在上,,垂足分别为,,则的长为()A.1.5 B.2 C.2.5 D.3二、填空题(每小题3分,共24分)11.如图,若△DEF是由△ABC沿BC方向平移得到的,EF=5,EC=3,则平移的距离是_____.12.为选派诗词大会比赛选手,经过三轮初赛,甲、乙、丙、丁四位选手的平均成绩都是86分,方差分别是s甲2=1.5,s乙2=2.6,s丙2=3.5,s丁2=3.68,若要从中选一位发挥稳定的选手参加决赛你认为派__________________去参赛更合适(填“甲”或“乙”或“丙”或“丁”)13.将二次函数化成的形式,则__________.14.如图,四边形ABCD是正方形,以CD为边作等边三角形CDE,BE与AC相交于点M,则∠ADM的度数是_____.15.定义运算“”:a*b=a-ab,若,,a*b,则x的值为_________.16.如图,直线y1=x+1和直线y1=0.5x+1.5相交于点(1,3),则当x=_____时,y1=y1;当x______时,y1>y1.17.某公司需招聘一名员工,对应聘者甲、乙、丙从笔试、面试、体能三个方面进行量化考核,甲、乙、丙各项得分如下表:笔试面试体能甲837990乙858075丙809073该公司规定:笔试、面试、体能得分分别不得低于80分、80分、70分,并按60%,30%,10%的比例计入总分,根据规定,可判定_____被录用.18.如图,折叠矩形纸片,使点与点重合,折痕为,点落在处,若,则的长度为______.三、解答题(共66分)19.(10分)三月底,某学校迎来了以“学海通识品墨韵,开卷有益览书山”为主题的学习节活动.为了让同学们更好的了解二十四节气的知识,本次学习节在沿袭以往经典项目的基础上,增设了“二十四节气之旅”项目,并开展了相关知识竞赛.该学校七、八年级各有400名学生参加了这次竞赛,现从七、八年级各随机抽取20名学生的成绩进行抽样调查.收集数据如下:七年级:八年级:整理数据如下:分析数据如下:根据以上信息,回答下列问题:(1)a=______,b=______;(2)你认为哪个年级知识竞赛的总体成绩较好,说明理由(至少从两个不同的角度说明推断的合理性);(3)学校对知识竞赛成绩不低于80分的学生颁发优胜奖,请你估计学校七、八年级所有学生中获得优胜奖的大约有_____人.20.(6分)在矩形ABCD中,E是AD延长线上一点,F、G分别为EC、AD的中点,连接BG、CG、BE、FG.(1)如图1,①求证:BG=CG;②求证:BE=2FG;(2)如图2,若ED=CD,过点C作CH⊥BE于点H,若BC=4,∠EBC=30°,则EH的长为______________.21.(6分)如图,在菱形ABCD中,∠ABC与∠BAD的度数比为1:2,周长是1.求:(1)两条对角线的长度;(2)菱形的面积.22.(8分)为声援扬州“运河申遗”,某校举办了一次运河知识竞赛,满分10分,学生得分为整数,成绩达到6分以上(包括6分)为合格,达到9分以上(包含9分)为优秀.这次竞赛中甲乙两组学生成绩分布的条形统计图如图所示.(1)补充完成下面的成绩统计分析表:组别
平均分
中位数
方差
合格率
优秀率
甲组
6.7
3.41
90%
20%
乙组
7.5
1.69
80%
10%
(2)小明同学说:“这次竞赛我得了7分,在我们小组中排名属中游略偏上!”观察上表可知,小明是组的学生;(填“甲”或“乙”)(3)甲组同学说他们组的合格率、优秀率均高于乙组,所以他们组的成绩好于乙组.但乙组同学不同意甲组同学的说法,认为他们组的成绩要好于甲组.请你给出两条支持乙组同学观点的理由.23.(8分)某汽车运输公司根据实际需要计划购买大、中型两种客车共20辆,已知大型客车每辆62万元,中型客车每辆40万元,设购买大型客车x(辆),购车总费用为y(万元).(1)求y与x的函数关系式(不要求写出自变量x的取值范围);(2)若购买中型客车的数量少于大型客车的数量,请你给出一种费用最省的方案,并求出该方案所需费用.24.(8分)如图1,把一张正方形纸片对折得到长方形ABCD,再沿∠ADC的平分线DE折叠,如图2,点C落在点C′处,最后按图3所示方式折叠,使点A落在DE的中点A′处,折痕是FG,若原正方形纸片的边长为9cm,则FG=_____cm.25.(10分)已知BD垂直平分AC,∠BCD=∠ADF,AF⊥AC,(1)证明ABDF是平行四边形;(2)若AF=DF=5,AD=6,求AC的长.26.(10分)菱形中,,,为上一个动点,,连接并延长交延长线于点.(1)如图1,求证:;(2)当为直角三角形时,求的长;(3)当为的中点,求的最小值.
参考答案一、选择题(每小题3分,共30分)1、B【解析】
根据图象中的信息即可得到结论.【详解】由图象中的信息可知,利润=售价﹣进价,利润最大的天数是第二天,故选B.2、B【解析】
试题分析:由四边形ABCD是矩形与AB=6,△ABF的面积是14,易求得BF的长,然后由勾股定理,求得AF的长,根据折叠的性质,即可求得AD,BC的长,继而求得答案.解:∵四边形ABCD是矩形,∴∠B=90°,AD=BC,∵AB=6,∴S△ABF=AB•BF=×6×BF=14,∴BF=8,∴AF===10,由折叠的性质:AD=AF=10,∴BC=AD=10,∴FC=BC﹣BF=10﹣8=1.故选B.考点:翻折变换(折叠问题).3、D【解析】试题分析:A、不等式的两边都加2,不等号的方向不变,故A正确;B、不等式的两边都乘以2,不等号的方向不变,故B正确;C、不等式的两条边都除以2,不等号的方向不变,故C正确;D、当0>m>n时,不等式的两边都乘以负数,不等号的方向改变,故D错误;故选D.【考点】不等式的性质.4、D【解析】试题分析:本题中如果平移的方向是垂直向上或垂直向下,则平移后的两直线之间的距离为4cm;如果平移的方向不是垂直向上或垂直向下,则平移后的两直线之间的距离小于4cm;故本题选D.5、D【解析】
过F作AB、CD的平行线FG,由于F是AD的中点,那么G是BC的中点,即Rt△BCE斜边上的中点,由此可得BC=2EG=2FG,即△GEF、△BEG都是等腰三角形,因此求∠B的度数,只需求得∠BEG的度数即可;易知四边形ABGF是平行四边形,得∠EFG=∠AEF,由此可求得∠FEG的度数,即可得到∠AEG的度数,根据邻补角的定义可得∠BEG的值,由此得解.【详解】过F作FG∥AB∥CD,交BC于G;则四边形ABGF是平行四边形,所以AF=BG,即G是BC的中点;连接EG,在Rt△BEC中,EG是斜边上的中线,则BG=GE=FG=BC;∵AE∥FG,∴∠EFG=∠AEF=∠FEG=54°,∴∠AEG=∠AEF+∠FEG=108°,∴∠B=∠BEG=180°-108°=72°.故选D.【点睛】此题主要考查了平行四边形的性质、直角三角形的性质以及等腰三角形的判定和性质,正确地构造出与所求相关的等腰三角形是解决问题的关键.6、D【解析】试题解析:即为负数或1.故选D.7、C【解析】
列举抛两枚硬币可能出现的情况,得出“一正一反”的概率,即为“频率”的估计值.【详解】抛两枚硬币可能出现的情况有:正正,正反,反正,反反四种等可能的情况,出现“一正一反”的概率为,则事件“一正一反”的“频率”的值约为,故选C.【点睛】本题考查概率与频率,掌握大量重复同一实验时,事件A出现的频率与概率大致相等是解题的关键.8、B【解析】
根据图象在坐标平面内的位置关系确定k,b的取值范围,从而求解.【详解】由一次函数y=kx+b的图象经过第一、三、四象限又由k>1时,直线必经过一、三象限,故知k>1再由图象过三、四象限,即直线与y轴负半轴相交,所以b<1.故选:B.【点睛】本题主要考查一次函数图象在坐标平面内的位置与k、b的关系.解答本题注意理解:直线y=kx+b所在的位置与k、b的符号有直接的关系.k>1时,直线必经过一、三象限.k<1时,直线必经过二、四象限.b>1时,直线与y轴正半轴相交.b=1时,直线过原点;b<1时,直线与y轴负半轴相交.9、C【解析】【分析】先根据黄金分割的定义得出较长的线段AP=BQ=AB,再根据PQ=AP+BQ-AB,即可得出结果.【详解】:根据黄金分割点的概念,可知AP=BQ=,则PQ=AP+BQ-AB=故选:C【点睛】此题主要是考查了黄金分割的概念:把一条线段分成两部分,使其中较长的线段为全线段与较短线段的比例中项,这样的线段分割叫做黄金分割,他们的比值()叫做黄金比.熟记黄金分割分成的两条线段和原线段之间的关系,能够熟练求解.10、D【解析】
作辅助线PB,求证,然后证明四边形是矩形,【详解】如图,连接.在正方形中,.∵,∴,∴.∵,∴四边形是矩形,∴.∴.故选D.【点睛】本题考查了全等三角形的判定定理(SAS)以及矩形对角线相等的性质,从而求出PD的长度二、填空题(每小题3分,共24分)11、1【解析】
平移的距离为线段BE的长求出BE即可解决问题;【详解】∵BC=EF=5,EC=3,∴BE=1,∴平移距离是1,故答案为:1.【点睛】本题考查平移的性质,解题的关键是理解题意,灵活运用所学知识解决问题.12、甲【解析】
根据方差的定义,方差越小数据越稳定即可求解.【详解】解:∵s甲2=1.5,s乙2=2.6,s丙2=3.5,s丁2=3.68,而1.5<2.6<3.5<3.68,∴甲的成绩最稳定,∴派甲去参赛更好,故答案为甲.【点睛】本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.13、【解析】
利用配方法,加上一次项系数的一半的平方来凑完全平方式,即可把一般式转化为顶点式.【详解】解:,,.故答案为:.【点睛】本题考查了二次函数的三种形式:一般式:,顶点式:;两根式:.正确利用配方法把一般式化为顶点式是解题的关键.14、75°【解析】
连接BD,根据BD,AC为正方形的两条对角线可知AC为BD的垂直平分线,所以∠AMD=AMB,求∠AMD,∠AMB,再根据三角形内角和可得.【详解】如图,连接BD,
∵∠BCE=∠BCD+∠DCE=90°+60°=150°,BC=EC,∴∠EBC=∠BEC=(180°-∠BCE)=15°,∵∠BCM=∠BCD=45°,∴∠BMC=180°-(∠BCM+∠EBC)=120°∴∠AMB=180°-∠BMC=60°
∵AC是线段BD的垂直平分线,M在AC上,∴∠AMD=∠AMB=60°,∴∠ADM=180〬-∠DAC-∠AMD=180〬-45〬-60〬=75〬.故答案为75〬【点睛】本题考核知识点:正方形性质,等边三角形.解题关键点:运用正方形性质,等边三角形性质求角的度数.15、±2【解析】
先根据新定义得出一元二次方程,求出方程的解即可.【详解】解:由题意可得:x+1-(x+1)•x=-3,
-x2=-4,
解得:x=±2,
故答案为:±2【点睛】本题考查了解一元二次方程的应用,解此题的关键是能根据已知得出一元二次方程,题目比较新颖,难度适中.16、1【解析】
直线y1=x+1和直线y1=0.5x+1.5交点的横坐标的值即为y1=y1时x的取值;直线y1=x+1的图象落在直线y1=0.5x+1.5上方的部分对应的自变量的取值范围即为时x的取值.【详解】解:∵直线和直线相交于点,∴当时,;由图象可知:当时,.故答案为:1;.【点睛】本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.也考查了一次函数与一元一次方程的关系.17、乙【解析】
由于甲的面试成绩低于80分,根据公司规定甲被淘汰;再将乙与丙的总成绩按比例求出测试成绩,比较得出结果.【详解】解:∵该公司规定:笔试,面试、体能得分分别不得低于80分,80分,70分,∴甲淘汰;乙成绩=85×60%+80×30%+75×10%=82.5,丙成绩=80×60%+90×30%+73×10%=82.3,乙将被录取.故答案为:乙.【点睛】本题考查了加权平均数的计算.平均数等于所有数据的和除以数据的个数.18、【解析】
由折叠的性质可得AF=FC,AG=DC=4,∠GAF=∠FCD=90°,由勾股定理可求AF的值,GF的值.【详解】解:∵折叠矩形纸片ABCD,使点C与点A重合,
∴AF=FC,AG=DC=4,∠GAF=∠FCD=90°
在Rt△ABF中,AF2=BF2+AB2,
∴AF2=(8-AF)2+16
∴AF=5
∴FG==故答案为:【点睛】本题考查翻折变换,矩形的性质,勾股定理,求AF的长是本题的关键.三、解答题(共66分)19、(1)8,88.1;(2)你认为八年级知识竞赛的总体成绩较好,理由1:理由2:见解析;或者你认为七年级知识竞赛的总体成绩较好,理由1:理由2:见解析;(答案不唯一,合理即可);(3)460.【解析】
(1)从调查的七年级的人数20减去前几组的人数即可,将八年级的20名学生的成绩排序后找到第10、11个数的平均数即是八年级的中位数,(2)从中位数、众数、方差进行分析,调查结论,(3)用各个年级的总人数乘以样本中优秀人数所占的比即可.【详解】(1)a=20-1-10-1=8,b=(88+89)÷2=88.1故答案为:8,88.1.(2)你认为八年级知识竞赛的总体成绩较好理由1:八年级成绩的中位数较高;理由2:八年级与七年级成绩的平均数接近且八年级方差较低,成绩更稳定.或者你认为七年级知识竞赛的总体成绩较好,理由1:七年级的平均成绩较高;理由2:低分段人数较少。(答案不唯一,合理即可)(3)七年级优秀人数为:400×=180人,八年级优秀人数为:400×=280人,180+280=460人.【点睛】考查频数分布表、众数、中位数、平均数、方差的意义及计算方法,明确各自的意义和计算方法是解决问题的前提.20、(1)①见解析,②见解析;(2)【解析】
(1)①由G是AD的中点得到GA=GD,再证明△CDG≌△BAG即可;②取BC的中点M,连接MF,GM,DF,在Rt△DCF中由斜边上的中线等于斜边的一半求出DF=MF,进而证明△GDF≌△MCF,得到GF=MF,再由MF是△BCE的中位线即可求解;(2)设DE=DC=AB=x,则AE=4+x,在Rt△ABE中由AB²+AE²=BE²求出x,进而求出BE的长,再在Rt△BHC中,求出CH=,进而求出BH,再用BE-BH即可求解.【详解】解:(1)①证明∵ABCD是矩形,∴∠A=∠D=90°,AB=CD又∵G是AD的中点,∴AG=DG在△BAG和△CDG中,∴△BAG≌△CDG(SAS),∴BG=CG;②证明:取BC的中点M,连接MF,GM,DF,如下图所示,∵F是直角△EDC斜边EC上的中点,∴FD=FE=FC,∴∠FDC=∠FCD,且∠GDF=∠GDC+∠FDC=90°+∠FDC,∠MCF=∠MCD+∠FCD=90°+∠FCD,∴∠GDF=∠MCF,又M、G分别是AD和BC的中点,∴MC=GD,在△GDF和△MCF中:,∴△GDF≌△MCF(SAS),∴GF=MF,又∵M、F分别BC和CE的中点,∴MF是△CBE的中位线,∴BE=2MF,故BE=2GF;(2)由题意可知,∠AEB=∠EBC=30°,设DE=DC=AB=x,则AE=AD+DE=BC+DE=4+x,由30°角所对的直角边等于斜边的一半知,BE=2AB=2x,在Rt△ABE中,由AB²+AE²=BE²可知,x²+(4+x)²=(2x)²,解得x=(负值舍去),∴BE=2x=,在Rt△BHC中,CH=BC=2,∴BH=,∴HE=BE-BH=,故答案为:.【点睛】本题考查了矩形的性质,三角形全等的判定方法,勾股定理,30°角所对直角边等于斜边的一半等,熟练掌握其定理及性质是解决本题的关键.21、(1)AC=8,BD=;(2).【解析】
(1)首先证明△ABC是等边三角形,解直角三角形OAB即可解决问题;(2)菱形的面积等于对角线乘积的一半;【详解】解:(1)菱形ABCD的周长为1,∴菱形的边长为1÷4=8∵∠ABC:∠BAD=1:2,∠ABC+∠BAD=180°∠ABC=60°,∠BCD=120°△ABC是等边三角形∴AC=AB=8∵菱形ABCD对角线AC、BD相交于点O∴AC⊥BD,∠ABO=∠ABC=30°∴OA=AB=4∴BO=.∴BD=(2)【点睛】本题考查菱形的性质、等边三角形的判定和性质、解直角三角形等知识,解题的关键是证明△ABC是等边三角形,属于中考常考题型.22、(1)6;7.1;(2)甲;(3)乙组的平均分,中位数高于甲组,方差小于甲组,故乙组成绩好于甲组【解析】
(1)将甲组成绩按照从小到大的顺序排列,找出第5、6个成绩,求出平均数即为甲组的中位数;找出乙组成绩,求出乙组的平均分,填表即可:∵甲组的成绩为:3,6,6,6,6,6,7,8,9,10,∴甲组中位数为6分∵乙组成绩为5,5,6,7,7,8,8,8,8,9,平均分为(分)(2)根据两组的中位数,观察表格,成绩为7分处于中游略偏上,应为甲组的学生.(3)乙组的平均分高于甲组,中位数高于甲组,方差小于甲组,所以乙组成绩好于甲组解:(1)填表如下:组别
平均分
中位数
方差
合格率
优秀率
甲组
6.7
6
3.41
90%
20%
乙组
7.1
7.5
1.69
80%
10%
(2)甲.(3)乙组的平均分,中位数高于甲组,方差小于甲组,故乙组成绩好于甲组故答案为(1)6;7.1;(2)甲23、1);(2)购买大型客车11辆,中型客车9辆时,购车费用最省,为1042万元.【解析】试题分析:(1)根据购车的数量以及价格根据总费用直接表示出等式;(2)根据购买中型客车的数量少于大型客车的数量,得出y=22x+800,中x的取值范围,再根据y随着x的增大而增大,得出x的值.试题解析:(1)因为购买大型客车x辆,所以购买中型客车辆..(2)依题意得<x.解得x>1.∵,y随着x的增大而增大,x为整数,∴当x=11时,购车费用最省,为22×11+800="1"042(万元).此时需购买大型客车11辆,中型客车9辆.答:购买大型客车11辆,中型客车9辆时,购车费用最省,为1042万元.考点:一次函数的应用24、【解析】
作GM⊥AC′于M,A′N⊥AD于N,AA′交EC′于K.易知MG=AB=AC′=4.5,首先证明△AKC′≌△GFM,可得GF=AK,由AN=6cm,A′N=3cm,C′K∥A′N,推出,可得,得出C′K=2cm,在Rt△AC′K中,根据AK=,求出AK即可解决问题.【详解】解:作GM⊥AC′于M,A′N⊥AD于N,AA′交EC′于K.易知MG=AB=AC′,
∵GF⊥AA′,
∴∠AFG+∠FA
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年高空作业升降机销售与安全培训服务合同2篇
- 2025年水性色浆合作协议书
- 2024年货车租赁协议:运输公司版
- 2025版环保型混凝土材料采购及工程应用合同3篇
- 2025年无机颜料:碳黑项目合作计划书
- 2024年版权购买与授权使用合同
- 2025版挖掘机融资租赁协议2篇
- 2024年项目管理合作合同3篇
- 2025版建筑节能工程设计与施工检测合同范本3篇
- 2024年度正规军婚离婚协议书范本及军人家庭纠纷解决途径3篇
- 先兆流产课件-课件
- 过敏反应的分类和护理
- DBJ43 003-2017 湖南省公共建筑节能设计标准
- 苏少版(2024)小学美术一年级上册教学设计(附教材目录)
- 【课件】讲文明懂礼仪守规矩 课件-2024-2025学年文明礼仪教育主题班会
- 计算流体力学CFD
- 汽车保险与理赔课件 7.4新能源汽车保险理赔典型事故案例
- 流行性脑脊髓膜炎诊疗方案(2023版)
- TCNLIC 0110-2023 卡牌玩具规范
- 灵活用工模式下的薪酬管理
- 天津市红桥区2024-2025学年九年级上学期期中道德与法治试卷
评论
0/150
提交评论