江苏省扬州市名校2024届数学八年级下册期末检测模拟试题含解析_第1页
江苏省扬州市名校2024届数学八年级下册期末检测模拟试题含解析_第2页
江苏省扬州市名校2024届数学八年级下册期末检测模拟试题含解析_第3页
江苏省扬州市名校2024届数学八年级下册期末检测模拟试题含解析_第4页
江苏省扬州市名校2024届数学八年级下册期末检测模拟试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江苏省扬州市名校2024届数学八年级下册期末检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.下列根式中属最简二次根式的是()A. B. C. D.2.若关于x的方程kx2﹣3x﹣=0有实数根,则实数k的取值范围是()A.k=0 B.k≥﹣1 C.k≥﹣1且k≠0 D.k>﹣13.天籁音乐行出售三种音乐,即古典音乐、流行音乐、民族音乐,为了表示这三种唱片的销售量占总销售量的百分比,应该用()A.条形统计图 B.扇形统计图 C.折线统计图 D.以上都可以4.点P(-2,5)关于原点对称的点的坐标是()A.(2,-5) B.(2,5) C.(-2,-5) D.(5,-2)5.下列属于菱形性质的是()A.对角线相等 B.对角线互相垂直C.对角互补 D.四个角都是直角6.4的平方根是()A.4 B.2 C.-2 D.±27.小华所在的九年级一班共有50名学生,一次体检测量了全班学生的身高,由此求得该班学生的平均身高是1.65米,而小华的身高是1.66米,下列说法错误的是()A.1.65米是该班学生身高的平均水平B.班上比小华高的学生人数不会超过25人C.这组身高数据的中位数不一定是1.65米D.这组身高数据的众数不一定是1.65米8.如图,直线y1=kx+b过点A(0,2),且与直线y2=mx交于点P(1,m),则不等式组的解集是()A. B. C. D.9.反比例函数y=-6xA.第一、二象限 B.第三、四象限C.第一、三象限 D.第二、四象限10.如图,已知四边形ABCD是边长为4的正方形,E为CD上一点,且DE=1,F为射线BC上一动点,过点E作EG⊥AF于点P,交直线AB于点G.则下列结论中:①AF=EG;②若∠BAF=∠PCF,则PC=PE;③当∠CPF=45°时,BF=1;④PC的最小值为﹣1.其中正确的有()A.1个 B.1个 C.3个 D.4个11.若分式在实数范围内有意义,则实数x的取值范围是()A. B. C. D.12.如图,矩形的顶点在轴正半轴上、顶点在轴正半轴上,反比例函数的图象分别与、交于点、,连接、、,若,则的值为()A.2 B.4 C.6 D.8二、填空题(每题4分,共24分)13.若关于x的一元二次方程x2+x+a=0有实数根,则a的取值范围为14.为预防传染病,某校定期对教室进行“药熏消毒”,已知药物燃烧阶段,室内每立方米空气中的含药量与燃烧时间(分钟)成正比例;烧灼后,与成反比例(如图所示).现测得药物分钟燃烧完,此时教室内每立方米空气含药量为.研究表明当每立方米空气中含药量低于时,对人体方能无毒作用,那么从消毒开始,至少需要经过______分钟后,学生才能回到教室.15.菱形的面积是16,一条对角线长为4,则另一条对角线的长为______.16.如图,矩形ABCD中,E是AD中点,将△ABE沿直线BE折叠后得到△GBE,延长BG交CD于F,若AB=6,BC=,则CF的长为_______17.如图,△ABC中,∠B=90°,AB=6,BC=8,将△ABC沿DE折叠,使点C落在AB边的C′处,并且C′D∥BC,则CD的长是________.18.若关于的分式方程的解是非负数,则的取值范围是__________.三、解答题(共78分)19.(8分)先观察下列等式,再回答问题:①=1+1=2;②=2+=2;③=3+=3;…(1)根据上面三个等式提供的信息,请猜想第四个等式;(2)请按照上面各等式规律,试写出用n(n为正整数)表示的等式,并用所学知识证明.20.(8分)如图,在平面直角坐标系中,已知A(-3,-4),B(0,-2).(1)△OAB绕O点旋转180°得到△OA1B1,请画出△OA1B1,并写出A1,B1的坐标;(2)判断以A,B,A1,B1为顶点的四边形的形状,并说明理由.21.(8分)如图,菱形ABCD的对角线AC和BD交于点O,AB=10,∠ABC=60°,求菱形ABCD的面积.22.(10分)已知求代数式:x=2+,y=2-.(1)求代数式x2+3xy+y2的值;(2)若一个菱形的对角线的长分别是x和y,求这个菱形的面积?23.(10分)如图,在四边形ABCD中,AD//BC,∠A=∠C,CD=2AD,BE⊥AD于点E,F为CD的中点,连接EF、BF.(1)求证:四边形ABCD是平行四边形;(2)求证:BF平分∠ABC;(3)请判断△BEF的形状,并证明你的结论.24.(10分)如图,正方形ABCD中,点E在BC边上,AF平分∠DAE,DF//AE,AF与CD相交于点G.(1)如图1,当∠AEC=,AE=4时,求FG的长;(2)如图2,在AB边上截取点H,使得DH=AE,DH与AF、AE分别交于点M、N,求证:AE=AH+DG25.(12分)全国两会民生话题成为社会焦点.合肥市记者为了了解百姓“两会民生话题”的聚焦点,随机调查了合肥市部分市民,并对调查结果进行整理.绘制了如图所示的不完整的统计图表.组别焦点话题频数(人数)A食品安全80B教育医疗mC就业养老nD生态环保120E其他60请根据图表中提供的信息解答下列问题:(1)填空:m=,n=.扇形统计图中E组所占的百分比为%;(2)合肥市人口现有750万人,请你估计其中关注D组话题的市民人数;(3)若在这次接受调查的市民中,随机抽查一人,则此人关注C组话题的概率是多少?26.如图,在平行四边形ABCD中,对角线AC、BD相交于点O,AF⊥BD,CE⊥BD,垂足分别为E、F;(1)连结AE、CF,得四边形AFCE,试判断四边形AFCE是下列图形中的哪一种?①平行四边形;②菱形;③矩形;(2)请证明你的结论;

参考答案一、选择题(每题4分,共48分)1、A【解析】试题分析:最简二次根式是指无法进行化简的二次根式.A、无法化简;B、原式=;C、原式=2;D、原式=.考点:最简二次根式2、B【解析】

讨论:①当k=0时,方程化为一次方程,方程有一个实数解;当k≠0时,方程为二次方程,Δ≥0,然后求出两个中情况下的的公共部分即可.【详解】解:①当k=0时,方程化为-3x-=0,解得x=;当k≠0时,Δ=≥0,解得k≥-1,所以k的范围为k≥-1.故选B.【点睛】本题主要考查一元二次方程根的判别式,注意讨论k的取值.3、B【解析】

扇形统计图表示的是部分在总体中所占的百分比,但一般不能直接从图中得到具体的数据;折线统计图表示的是事物的变化情况;条形统计图能清楚地表示出每个项目的具体数目.根据以上即可得出.【详解】根据题意,知,要求表示这三种唱片的销售量占总销售的百分比,结合统计图各自的特点,应选用扇形统计图.故选B.【点睛】本题考查了统计图的选择,熟练掌握扇形统计图、折线统计图及条形统计图的特征是解题的关键.4、A【解析】

关于原点对称,横纵坐标都要变号,据此可得答案.【详解】点P(-2,5)关于原点对称的点的坐标是(2,-5),故选A.【点睛】本题考查求对称点坐标,熟记“关于谁对称,谁不变;关于原点对称,两个都变号”是解题的关键.5、B【解析】

根据菱形的对角线的特征,内角的特征,对称性来判断即可.【详解】A.矩形的对角线平分、相等,故A选项错误;B.菱形的对角线平分、相等,故B选项正确;C.矩形的对角互补,故C选项错误;D.矩形的四个角都是直角,故D选项错误;故选:B.【点睛】此题考查菱形的性质,解题关键在于掌握菱形的性质6、D【解析】∵,∴4的平方根是,故选D.7、B【解析】根据平均数是指在一组数据中所有数据之和再除以数据的个数,它是反映数据集中趋势的一项指标.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数,中位数代表了这组数据值大小的“中点”,不易受极端值影响,但不能充分利用所有数据的信息,对每一项进行分析即可:A、1.65米是该班学生身高的平均水平,正确;B、因为小华的身高是1.66米,不是中位数,所以班上比小华高的学生人数不会超过25人错误;C、这组身高数据的中位数不一定是1.65米,正确;D、这组身高数据的众数不一定是1.65米,正确.故选B.8、A【解析】

由于一次函数y1同时经过A、P两点,可将它们的坐标分别代入y1的解析式中,即可求得k、b与m的关系,将其代入所求不等式组中,即可求得不等式的解集.【详解】由于直线y1=kx+b过点A(0,2),P(1,m),则有:解得.∴直线y1=(m−2)x+2.故所求不等式组可化为:mx>(m−2)x+2>mx−2,不等号两边同时减去mx得,0>−2x+2>−2,解得:1<x<2,故选A.【点睛】本题属于对函数取值的各个区间的基本情况的理解和运用9、D【解析】

根据反比例函数的比例系数来判断图象所在的象限,k>0,位于一、三象限;k<0,位于二、四象限.【详解】∵y=-6x∴函数图象过二、四象限.故选D.【点睛】本题考查反比例函数的图象和性质:当k>0,位于一、三象限;k<0,位于二、四象限,比较简单,容易掌握.10、C【解析】

连接AE,过E作EH⊥AB于H,则EH=BC,根据全等三角形的判定和性质定理即可得到AF=EG,故①正确;根据平行线的性质和等腰三角形的性质即可得到PE=PC;故②正确;连接EF,推出点E,P,F,C四点共圆,根据圆周角定理得到∠FEC=∠FPC=45°,于是得到BF=DE=1,故③正确;取AE的中点O,连接PO,CO,根据直角三角形的性质得到AO=PO=AE,推出点P在以O为圆心,AE为直径的圆上,当O、C、P共线时,CP的值最小,根据三角形的三边关系得到PC≥OC﹣OP,根据勾股定理即可得到结论.【详解】连接AE,过E作EH⊥AB于H,则EH=BC,∵AB=BC,∴EH=AB,∵EG⊥AF,∴∠BAF+∠AGP=∠BAF+∠AFB=90°,∴∠EGH=∠AFB,∵∠B=∠EHG=90°,∴△HEG≌△ABF(AAS),∴AF=EG,故①正确;∵AB∥CD,∴∠AGE=∠CEG,∵∠BAF+∠AGP=90°,∠PCF+∠PCE=90°,∵∠BAF=∠PCF,∴∠AGE=∠PCE,∴∠PEC=∠PCE,∴PE=PC;故②正确;连接EF,∵∠EPF=∠FCE=90°,∴点E,P,F,C四点共圆,∴∠FEC=∠FPC=45°,∴EC=FC,∴BF=DE=1,故③正确;取AE的中点O,连接PO,CO,∴AO=PO=AE,∵∠APE=90°,∴点P在以O为圆心,AE为直径的圆上,∴当O、C、P共线时,CP的值最小,∵PC≥OC﹣OP,∴PC的最小值=OC﹣OP=OC﹣AE,∵OC==,AE==,∴PC的最小值为﹣,故④错误,故选:C.【点睛】此题考查了正方形的性质、全等三角形的判定和性质、直角三角形的性质、圆的综合等知识,借助圆的性质解决线段的最小值是解答的关键.11、B【解析】

根据分式分母不能等于0即可得出答案【详解】解:∵分式在实数范围内有意义∴解得:故选B【点睛】本题考查分式在实数范围内有意义,比较简单,要熟练掌握12、D【解析】

根据点的坐标特征得到,根据矩形面积公式、三角形的面积公式列式求出的关系,根据反比例函数图象上点的坐标特征得到,解方程得到答案.【详解】解:∵点,∴,则,由题意得,,整理得,,∵点在反比例函数上,∴,解得,,则,故选:D.【点睛】本题考查的是反比例函数比例系数k的几何意义、反比例函数图象上点的坐标特征、矩形的性质、三角形的面积公式,掌握反比例函数比例系数k的几何意义是解题的关键.二、填空题(每题4分,共24分)13、a≤【解析】

根据一元二次方程的定义和根的判别式得到△=b2-4ac≥0,然后求出不等式的解即可.【详解】解:∵x2∴△=b2-4ac≥0即1-4a≥0,解得:即a的取值范围为:a≤【点睛】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:当△>0时,方程有两个不相等的两个实数根;当△=0时,方程有两个相等的两个实数根;当△<0时,方程无实数根.14、1【解析】

先求得反比例函数的解析式,然后把代入反比例函数解析式,求出相应的即可;【详解】解:设药物燃烧后与之间的解析式,把点代入得,解得,关于的函数式为:;当时,由;得,所以1分钟后学生才可进入教室;故答案为:1.【点睛】本题考查了一次函数与反比例函数的应用,现实生活中存在大量成反比例函数的两个变量,解答该类问题的关键是确定两个变量之间的函数关系,然后利用待定系数法求出它们的关系式.15、8【解析】【分析】根据菱形的面积等于对角线乘积的一半进行计算即可求得.【详解】设另一条对角线的长为x,则有=16,解得:x=8,故答案为8.【点睛】本题考查了菱形的面积,熟知菱形的面积等于菱形对角线乘积的一半是解题的关键.16、2【解析】分析:根据点E是AD的中点以及翻折的性质可以求出AE=DE=EG;然后利用“HL”证明△EDF和△EGF全等,根据全等三角形的对应边相等可证得DF=GF;设DF=x,接下来表示出FC、BF,在Rt△BCF中,利用勾股定理列式进行计算即可得解.详解:∵E是AD的中点,∴AE=DE.∵△ABE沿BE折叠后得到△GBE,∴AE=EG,AB=BG,∴ED=EG.∵在矩形ABCD中,∠A=∠D=90°,∴∠EGF=90°.∵在Rt△EDF和Rt△EGF中,ED=EG,EF=EF,∴Rt△EDF≌Rt△EGF,∴DF=FG.设CF=x,则DF=6-x,BF=12-x.在Rt△BCF中,()2+x2=(12-x)2,解得x=2.∴CF=2.故答案为:2.点睛:本题考查了矩形的性质,勾股定理

翻折变换(折叠问题),全等三角形的判定与性质.根据“HL”证明Rt△EDF≌Rt△EGF是解答本题的关键.17、【解析】

解:设CD=x,根据C′D∥BC,且有C′D=EC,可得四边形C′DCE是菱形;即Rt△BC′E中,AC==10,EB=x;故可得BC=x+x=8;解得x=.18、且【解析】

分式方程去分母转化为整式方程,由分式方程的解是非负数,确定出a的范围即可.【详解】去分母得:,即,由分式方程的解为非负数,得到≥0,且≠2,解得:且,故答案为:且.【点睛】此题考查了分式方程的解,以及解一元一次不等式,熟练掌握运算法则是解本题的关键.三、解答题(共78分)19、(1);(2),证明见解析.【解析】

(1)根据“第一个等式内数字为1,第二个等式内数字为2,第三个等式内数字为3”,即可猜想出第四个等式为44;(2)根据等式的变化,找出变化规律“n”,再利用开方即可证出结论成立.【详解】(1)∵①1+1=2;②22;③33;里面的数字分别为1、2、3,∴④.(2)观察,发现规律:1+1=2,223344,…,∴.证明:等式左边=n右边.故n成立.【点睛】本题考查了二次根式的性质与化简以及规律型中数的变化类,解题的关键是:(1)猜测出第四个等式中变化的数字为4;(2)找出变化规律“n”.解决该题型题目时,根据数值的变化找出变化规律是关键.20、(1)画图见解析,A1(3,4),B1(0,2);(2)以A、B、A1、B1为顶点的四边形为平行四边形,理由见解析.【解析】

(1)延长AO至A1,A1O=AO,延长BO至B1,B1O=AO,顺次连接A1B1O,再根据关于原点对称的点的坐标关系,写出A1,B1的坐标.(2)由两组对边相等,可知四边形是平行四边形.【详解】解:(1)如图图所示,△OA1B1即为所求,A1(3,4)、B1(0,2);(2)由图可知,OB=OB1=2、OA=OA1==5,∴四边形ABA1B1是平行四边形.【点睛】本题考核知识点:图形旋转,中心对称和点的坐标,平行四边形判定.解题关键点:熟记关于原点对称的点的坐标关系,掌握平行四边形的判定定理.21、【解析】

根据菱形的性质得到AO的长度,由等边三角形的性质和勾股定理,得到BO的长度,由菱形的面积公式可求解.【详解】解:菱形ABCD中,BA=BC,∠ABC=60°,∴三角形ABC为等边三角形,∴AC=AB=10;∴AO=5,∴BO==5∴BD=10∴菱形ABCD的面为S=【点睛】本题考查了菱形的性质,熟练运用菱形的面积公式是本题的关键.22、(1)18;(2)1.【解析】(1)求出x+y,xy的值,利用整体的思想解决问题;(2)根据菱形的面积等于对角线乘积的一半计算即可.解:(1)∵x=,y=,∴x+y=4,xy=4-2=2∴x2+3xy+y2=(x+y)2+xy=16+2=18(2)S菱形=xy==(4-2)=1“点睛”本题考查菱形的性质,二次根式的加减乘除运算法则等知识,解题的关键是学会整体的思想进行化简计算,属于中考常考题型.23、(1)见解析;(2)见解析;(3)ΔBEF为等腰三角形,见解析.【解析】

(1)由平行线的性质得出∠A+∠ABC=180°,由已知得出∠C+∠ABC=180°,证出AB//BC,即可得出四边形ABCD是平行四边形;(2)由平行四边形的性质得出BC=AD,AB//CD,得出∠CFB=∠ABF,由已知得出CF=BC,得出∠CFB=∠CBF,证出∠ABF=∠CBF即可;(3)作FG⊥BE于G,证出FG/AD//BC,得出EG=BG,由线段垂直平分线的性质得出EF=BF即可.【详解】解:(1)证明:∵AD∥BC,∴∠A+∠ABC=180°:∵∠A=∠C∴∠C+∠ABC=180°∴AB∥CD∴四边形ABCD是平行四边形(2)证明:∵F点为CD中点∴CD=2CF∴CD=2AD∴CF=AD=BC∴∠CFB=∠CBF∴CD∥AB∴∠CFB=∠FBA∴∠FBA=∠CBF∴BF平分∠ABC(3)ΔBEF为等腰三角形理由:如图,延长EF交B延长线于点G∴DA∥BG∴∠G=∠DEF∵F为DC中点∴DF=CF又∵∠DFE=∠CFG∴ΔDFE≌ΔCFG(AAS)∴FE=FG∵AD∥BC,BE⊥AD∴BE⊥CD∴∠EBG=90°在RtΔEBG中,F为BG中点∴BF=EG=EF∴ΔBEF为等腰三角形.【点睛】本题考查了平行四边形的判定与性质、等腰三角形的判定与性质、线段垂直平分线的性质、平行线的性质等知识;熟练掌握平行四边形的判定与性质是解题的关键/24、(1)FG=2;(2)见解析.【解析】

(1)根据正方形的性质,平行线的性质,角平分线的性质可得出∠DAF=∠F=30°,进一步可求得∠GDF=∠F=30°,从而得出FG=DG,利用勾股定理可求出DG=2,故FG=2.(2)根据已知条件可证得AE=DH且AE⊥DH,从而证得∠MAH=∠AMH,∠DMG=∠DGM,从而证得AH=MH,DM=DG,而AE=DH=DM+MH即AE=AH+DG.【详解】(1)当∠AEC=120°,即∠DAE=60°,即∠BAE=∠EAG=∠DAG=30°,在三角形ABE中,AE=4,所以,BE=2,AB=2,所以,AD=AB=2,又DF∥AE,所以,∠F=∠EAG=

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论