版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江苏省淮安市三树镇蒋集九一贯制学校2024年八年级下册数学期末综合测试试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每小题3分,共30分)1.下列所给图形中,既是中心对称图形又是轴对称图形的是()A. B. C. D.2.某班第一组12名同学在“爱心捐款”活动中,捐款情况统计如下表,则捐款数组成的一组数据中,中位数与众数分别是()捐款(元)
10
15
20
50
人数
1
5
4
2
A.15,15 B.17.5,15 C.20,20 D.15,203.有一个直角三角形的两边长分别为3和4,则第三边的长为()A.5 B. C. D.5或4.若关于x的方程是一元二次方程,则m的取值范围是()A.. B.. C. D..5.已知关于x的一元二次方程x2+2x+k=0有实数根,则k的取值范围是()A.k≥1 B.k≤4 C.k<1 D.k≤16.如图,△ABC是等边三角形,被一平行于BC的矩形所截,AB被截成三等分,则图中阴影部分的面积是△ABC的面积的A. B. C. D.7.下列变形错误的是()A. B.C. D.8.漳州市政府为了鼓励市民绿色出行,投资了一批城市公共自行车,收费如下:第1小时内免费,1小时以上,每半小时收费0.5元(不到半小时按半小时计).马小跳刷卡时显示收费1.5元,则马小跳租车时间x的取值范围为()A.1<x≤1.5 B.2<x≤2.5 C.2.5<x≤3 D.3<x≤49.如图,广场中心菱形花坛ABCD的周长是32米,∠A=60°,则A、C两点之间的距离为()A.4米 B.4米 C.8米 D.8米10.如图,四边形ABCD是⊙O的内接四边形,⊙O的半径为4,∠B=135°,则劣弧AC的长是()A.4π B.2π C.π D.二、填空题(每小题3分,共24分)11.某学校八年级班有名同学,名男生的平均身高为名女生的平均身高,则全班学生的平均身高是__________.12.观察下列式子:当n=2时,a=2×2=4,b=22﹣1=3,c=22+1=5n=3时,a=2×3=6,b=32﹣1=8,c=32+1=10n=4时,a=2×4=8,b=42﹣1=15,c=42+1=17…根据上述发现的规律,用含n(n≥2的整数)的代数式表示上述特点的勾股数a=_____,b=_____,c=_____.13.甲、乙两人进行射击测试,每人20次射击的平均成绩恰好相等,且他们的标准差分别是S甲=1.8,S乙=0.1.在本次射击测试中,甲、乙两人中成绩较为稳定的是_____.(填:甲或乙)14.函数中自变量x的取值范围是.15.方程的解为_________.16.如图,在矩形ABCD中,AC,BD相交于点O,AE平分∠BAD交BC于点E,若∠CAE=15°,则∠BOE的度数为____________.17.数据﹣2、﹣1、0、1、2的方差是_____.18.已知一次函数y=kx+b的图象如图所示,则不等式kx+b≥4的解是______.三、解答题(共66分)19.(10分)(1)操作思考:如图1,在平面直角坐标系中,等腰直角的直角顶点在原点,将其绕着点旋转,若顶点恰好落在点处.则①的长为______;②点的坐标为______(直接写结果)(2)感悟应用:如图2,在平面直角坐标系中,将等腰直角如图放置,直角顶点,点,试求直线的函数表达式.(3)拓展研究:如图3,在直角坐标系中,点,过点作轴,垂足为点,作轴,垂足为点是线段上的一个动点,点是直线上一动点.问是否存在以点为直角顶点的等腰直角,若存在,请直接写出此时点的坐标,若不存在,请说明理由.20.(6分)如图,在▱ABCD中,E、F分别是BC、AD边上的点,且∠1=∠1.求证:四边形AECF是平行四边形.21.(6分)如图,在正方形ABCD中,E是CD边的中点,AC与BE相交于点F,连接DF.(1)在不增加点和线的前提下,直接写出图中所有的全等三角形;(2)连接AE,试判断AE与DF的位置关系,并证明你的结论;(3)延长DF交BC于点M,试判断BM与MC的数量关系.(直接写出结论)22.(8分)如图,将长方形ABCD沿EF折叠,使顶点C恰好落在AB边的中点上.若,,求BF的长.23.(8分)如图,已知直线交轴于点,交轴于点,点,是直线上的一个动点.(1)求点的坐标,并求当时点的坐标;(2)如图,以为边在上方作正方形,请画出当正方形的另一顶点也落在直线上的图形,并求出此时点的坐标;(3)当点在上运动时,点是否也在某个函数图象上运动?若是请直接写出该函数的解析式;若不在,请说明理由.24.(8分)如图,某一时刻垂直于地面的大楼的影子一部分在地上,另一部分在斜坡上.已知坡角,米,米,且同一时刻竖直于地面长1米的标杆的影长恰好也为1米,求大楼的高度.25.(10分)如图,在Rt△ABC中,∠BAC=90°,AB=6,AC=1.射线BD为∠ABC的平分线,交AC于点D.动点P以每秒2个单位长度的速度从点B向终点C运动.作PE⊥BC交射线BD于点E.以PE为边向右作正方形PEFG.正方形PEFG与△BDC重叠部分图形的面积为S.(1)求tan∠ABD的值.(2)当点F落在AC边上时,求t的值.(3)当正方形PEFG与△BDC重叠部分图形不是三角形时,求S与t之间的函数关系式.26.(10分)列分式方程解应用题“六一”前夕,某商场用7200元购进某款电动玩具销售.由于销售良好,过了一段时间,商场又用14800元购进这款玩具,所购数量是第一次购进数量的2倍,但每件价格比第一次购进贵了2元.(1)求该商场第一次购进这款玩具多少件?(2)设该商场两次购进的玩具按相同的标价销售,最后剩下的80件玩具按标价的六折再销售,若两次购进的玩具全部售完,且使利润不低于4800元,则每件玩具的标价至少是多少元?
参考答案一、选择题(每小题3分,共30分)1、D【解析】
结合中心对称图形和轴对称图形的概念求解即可.【详解】解:A、是轴对称图形,不是中心对称图形.故本选项错误;B、不是轴对称图形,是中心对称图形.故本选项错误;C、是轴对称图形,不是中心对称图形.故本选项错误;D、既是中心对称图形,又是轴对称图形.故本选项正确;
故选:D.【点睛】本题主要考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.2、B【解析】
根据中位数和众数的概念进行判断.【详解】共有数据12个,第6个数和第7个数分别是1,20,所以中位数是:(1+20)÷2=17.5;捐款金额的众数是1.故选B.【点睛】本题考查中位数和众数,将数据从小到大或从大到小排列后,最中间的一个数或两个数的平均数称为中位数,出现次数最多的是众数.3、D【解析】
分4是直角边、4是斜边,根据勾股定理计算即可.【详解】当4是直角边时,斜边==5,当4是斜边时,另一条直角边=,故选:D.【点睛】本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a1+b1=c1.4、A【解析】
根据一元二次方程的定义可得m﹣1≠0,再解即可.【详解】由题意得:m﹣1≠0,解得:m≠1,故选A.【点睛】此题主要考查了一元二次方程的定义,关键是掌握只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程.5、D【解析】
由一元二次方程有实数根可得△=b2﹣4ac=22﹣4×k×1≥0,解不等式即可.【详解】∵△=b2﹣4ac=22﹣4×k×1≥0,解得:k≤1,故选D.【点评】本题考查了一元二次方程根的判别式的应用,解此类题时切记不要忽略一元二次方程二次项系数不为零这一隐含条件.6、C【解析】
解:∵AB被截成三等分,∴△AEH∽△AFG∽△ABC,∴,∴S△AFG:S△ABC=4:9S△AEH:S△ABC=1:9∴S阴影部分的面积=S△ABC﹣S△ABC=S△ABC故选C.7、D【解析】试题解析:A选项分子和分母同时除以最大公因式;B选项的分子和分母互为相反数;C选项分子和分母同时除以最大公因式,D选项正确的变形是所以答案是D选项故选D.8、B【解析】
根据题意,可以列出相应的不等式组,从而可以求得x的取值范围.【详解】由题意可得,,解得,2<x≤2.5,故选B.【点睛】本题考查一元一次不等式组的应用,解答本题的关键是明确题意,列出相应的不等式组,注意题目中每半小时收费0.5元,也就是说每小时收费1元.9、D【解析】分析:由四边形ABCD为菱形,得到四条边相等,对角线垂直且互相平分,将问题转化为求OA;根据∠BAD=60°得到△ABD为等边三角形,即可求出OB的长,再利用勾股定理求出OA即可求解.详解:设AC与BD交于点O.∵四边形ABCD为菱形,∴AC⊥BD,OA=OC,OB=OD,AB=BC=CD=AD=32÷4=8米.∵∠BAD=60°,AB=AD,∴△ABD为等边三角形,∴BD=AB=8米,∴OD=OB=4米.在Rt△AOB中,根据勾股定理得:OA=4(米),∴AC=2OA=8米.故选D.点睛:本题主要考查的是勾股定理,菱形的性质以及等边三角形的判定与性质,熟练掌握菱形的性质是解题的关键.10、B【解析】
如图,连接AO,BO,先求出∠AOC的长,再根据弧长公式求出的长即可.【详解】如图,连接AO,BO,根据题意可知,∠CDA=180°-∠B=180°-135°=45°,∴∠AOC=2∠CDA=90°,∴.故选B.【点睛】本题主要考查弧与圆周角的关系、圆周角定理以及弧长公式,求出∠AOC的大小是解答本题的关键.二、填空题(每小题3分,共24分)11、【解析】
只要运用求平均数公式:即可求得全班学生的平均身高.【详解】全班学生的平均身高是:.故答案为:1.【点睛】本题考查的是样本平均数的求法.熟记公式是解决本题的关键.12、2n,n2﹣1,n2+1.【解析】
由n=2时,a=2×2=4,b=22﹣1=3,c=22+1=5;n=3时,a=2×3=6,b=32﹣1=8,c=32+1=10;n=4时,a=2×4=8,b=42﹣1=15,c=42+1=17…得出a=2n,b=n2﹣1,c=n2+1,满足勾股数.【详解】解:∵当n=2时,a=2×2=4,b=22﹣1=3,c=22+1=5n=3时,a=2×3=6,b=32﹣1=8,c=32+1=10n=4时,a=2×4=8,b=42﹣1=15,c=42+1=17…∴勾股数a=2n,b=n2﹣1,c=n2+1.故答案为2n,n2﹣1,n2+1.考点:勾股数.13、乙【解析】
根据标准差的意义求解可得.标准差越小,稳定性越好.【详解】解:∵S甲=1.8,S乙=0.1,∴S甲>S乙,∴成绩较稳定的是乙.故答案为:乙.【点睛】本题考查标准差的意义标准差是反应一组数据离散程度最常用的一种量化形式,是表示精密确的最要指标标准差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.14、【解析】
求函数自变量的取值范围,就是求函数解析式有意义的条件,根据二次根式被开方数必须是非负数和分式分母不为0的条件.【详解】解:要使在实数范围内有意义,必须.15、【解析】
采用分解因式法解方程即可.【详解】解:,解得.【点睛】本题考查了分解因式法解方程.16、【解析】
由矩形ABCD,得到OA=OB,根据AE平分∠BAD,得到等边三角形OAB,推出AB=OB,求出∠OAB、∠OBC的度数,根据平行线的性质和等角对等边得到OB=BE,根据三角形的内角和定理即可求出答案.【详解】解:∵四边形ABCD是矩形,∴AD∥BC,AC=BD,OA=OC,OB=OD,∠BAD=90°,∴OA=OB,∠DAE=∠AEB,∵AE平分∠BAD,∴∠BAE=∠DAE=45°=∠AEB,∴AB=BE,∵∠CAE=15°,∴∠DAC=45°-15°=30°,∠BAC=60°,∴△BAO是等边三角形,∴AB=OB,∠ABO=60°,∴∠OBC=90°-60°=30°,∵AB=OB=BE,∴∠BOE=∠BEO=故答案为75°.【点睛】本题主要考查了三角形的内角和定理,矩形的性质,等边三角形的性质和判定,平行线的性质,角平分线的性质,等腰三角形的判定等知识点,解此题的关键是求出∠OBC的度数和求OB=BE.17、2【解析】
根据题目中的数据可以求得这组数据的平均数,然后根据方差的计算方法可以求得这组数据的方差.【详解】由题意可得,这组数据的平均数是:x==0,∴这组数据的方差是:,故答案为:2.【点睛】此题考查方差,解题关键在于掌握运算法则18、x≤1【解析】
根据图形得出k<1和直线与y轴交点的坐标为(1,4),即可得出不等式的解集.【详解】∵从图象可知:k<1,直线与y轴交点的坐标为(1,4),∴不等式kx+b≥4的解集是x≤1.故答案为:x≤1.【点睛】本题考查了一次函数与一元一次不等式,能根据图形读出正确信息是解答此题的关键.三、解答题(共66分)19、(1);(2);(3)【解析】
(1)根据勾股定理可得OA长,由对应边相等可得B点坐标;(2)通过证明得出点B坐标,用待定系数法求直线的函数表达式;(3)设点Q坐标为,可通过证三角形全等的性质可得a的值,由Q点坐标可间接求出P点坐标.【详解】解:(1)如图1,作轴于F,轴于E.由A点坐标可知在中,根据勾股定理可得;为等腰直角三角形轴于F,轴于E又所以B点坐标为:(2)如图,过点作轴.为等腰直角三角形轴又∴,∴,∴.设直线的表达式为将和代入,得,解得,∴直线的函数表达式.(3)如图3,分两种情况,点Q可在x轴下方和点Q在x轴上方设点Q坐标为,点P坐标为当点Q在x轴下方时,连接,过点作交其延长线于M,则M点坐标为为等腰直角三角形又由题意得,解得,所以当点Q在x轴上方时,连接,过点作交其延长线于N,则N点坐标为同理可得,由题意得,解得,所以综上的坐标为:.【点睛】本题是一次函数与三角形的综合,主要考查了一次函数解析式、全等三角形的证明及性质,灵活运用全等的性质求点的坐标是解题的关键.20、详见解析【解析】
由条件可证明AE∥FC,结合平行四边形的性质可证明四边形AECF是平行四边形.【详解】证明:∵四边形ABCD为平行四边形,∴AD∥BC,∴∠1=∠EAF,∵∠1=∠1,∴∠EAF=∠1,∴AE∥CF,∴四边形AECF是平行四边形.【点睛】本题主要考查平行四边形的性质和判定,利用平行四边形的性质证得AE∥CF是解题的关键.21、(1)△ADF≌△ABF,△ADC≌△ABC,△CDF≌△CBF;(1)AE⊥DF,详见解析;(3)详见解析【解析】
(1)根据正方形的性质得到相关的条件找出全等的三角形:△ADF≌△ABF,△ADC≌△ABC,△CDF≌△CBF;(1)利用正方形的性质证明△ADE≌△BCE,再利用全等的关系求出∠AHD=90°,得到AE⊥DF;(3)利用(1)中结论,及正方形的性质证明△DCM≌△BCE,得到CE=CM,结合点E为DC的中点即可证明点M为BC的中点.【详解】解:(1)∵四边形ABCD是正方形,∴AB=AD=BC=DC,∠DAC=∠BAC=∠DCA=∠BCA=23°,又∵AF=AF,∴△ADF≌△ABF,∵AC=AC,∴△ADC≌△ABC,∵CF=CF,∴△CDF≌△CBF,∴全等的三角形有:△ADF≌△ABF,△ADC≌△ABC,△CDF≌△CBF.(1)AE⊥DF.证明:设AE与DF相交于点H.∵四边形ABCD是正方形,∴AD=AB,∠DAF=∠BAF.又∵AF=AF,∴△ADF≌△ABF.∴∠1=∠1.又∵AD=BC,∠ADE=∠BCE=90°,DE=CE,∴△ADE≌△BCE.∴∠3=∠2.∵∠1+∠2=90°,∴∠1+∠3=90°,∴∠AHD=90°.∴AE⊥DF.(3)如图,∵∠ADE=90°,AE⊥DF.∴∠1+∠3=90°,∠3+∠1=90°.∴∠3=∠3,∵∠3=∠2,∴∠2=∠3.∵DC=BC,∠DCM=∠BCE=90°,∴△DCM≌△BCE.∴CE=CM,又∵E为CD中点,且CD=CB,∴CE=CD=BC,∴CM=CB,即M为BC中点,∴BM=MC.【点睛】主要考查了正方形的性质和全等三角形的判定.充分利用正方形的特殊性质来找到全等的条件从而判定全等后利用全等三角形的性质解题.22、1.【解析】
先求出BC′,再由图形折叠特性知,C′F=CF=BC-BF=9-BF,在Rt△C′BF中,运用勾股定理BF2+BC′2=C′F2求解.【详解】解:∵将长方形ABCD沿EF折叠,使顶点C恰好落在AB边的中点C′上
∴BC'=AB=3,CF=C'F
在Rt△BC'F中,C'F2=BF2+C'B2,
∴CF2=(9-CF)2+9
∴CF=5
∴BF=1.【点睛】本题考查折叠问题及勾股定理的应用,同时也考查了列方程求解的能力.解题的关键是找出线段的关系.23、(1),D(1.2,1.6)或(2.8,-1.6);(2)或,见解析;(3)点F在直线上运动,见解析.【解析】
(1)利用待定系数法求出A,B两点坐标,再构建方程即可解决问题.
(2)分两种情形:①如图1,当点F在直线上时,过点D作DG⊥x轴于点G,过点F作FH⊥x轴于点H,②如图2,当点E在直线上时,过点D作DG⊥x轴于点G,过点E作EH⊥x轴于点H,过点D作DM⊥EH于点M,分别求解即可解决问题.
(3)由(2)①可知:点F的坐标F(2m-7,m+3),令x=2m-7,y=m+3,消去m即可得到.【详解】解:(1)令,则,解得,,,易得,由得,,解得,由解得或2.8,∴D(1.2,1.6)或(2.8,-1.6).(2)①如图1,当点在直线上时,过点作轴于点,过点作轴于点,图1设,易证,,则,,,得,;②如图2,当点在直线上时,过点作轴于点,过点作轴于点,图2过点作于点,同①可得,,则,,,得,;(3)设D(m,-2m+4),由(2)①可知:F(2m-7,m+3),
令x=2m-7,y=m+3,消去m得到:点在直线上运动.故答案为:(1),D(1.2,1.6)或(2.8,-1.6);(2)或,见解析;(3)点F在直线上运动,见解析.【点睛】本题属于一次函数综合题,考查正方形的性质,三角形的面积,全等三角形的判定和性质,待定系数法等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考压轴题.24、24米【解析】
过点D作DH⊥CE,DG⊥AC,在两个直角三角形中分别求得DH=2,BH=2,然后根据同一时刻竖直于地面长1米的标杆的影长恰好也为1米,求得AG=GD=BC+BH=22米,最后求得大楼的高度即可.【详解】解:过点作.∵,∴.∵同一时刻1米的标杆影长为1米,∴.∴楼高(米).【点睛】本题考查了解直角三角形的应用,正确的构造两个直角三角形是解题的关键.25、(1)tan∠ABD=;(2);(3)①当时,;②当时,;③当时,.【解析】
(1)过点D作DH⊥BC于点H,可得△ABD≌△HBD,所以CH=BC-AB=4.再由三角形相似即可求出DH=AD=3.根据三角函数定义即可解题.(2)由(1)得BP=2PE,所以BP=2t,PE=PG=EF=FG=t,当点F落在AC边上时,FG=CG,即可得到方程求出t.(3)当正方形PEFG与△BDC重叠部分图形不是三角形时,分三种情况分别求出S与t之间的函数关系式,①当时,F点在三角形内部或边上,②当时,如图:E
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2023年国家公务员录用考试《申论》真题(地市卷)及答案解析
- 中班 秋天课件
- 2024年1月福建省普通高中学业水平合格性考试化学试题(原卷版)
- 社区少先队课件
- 苏教版科学课件
- 西南林业大学《材料研究及分析方法实验》2022-2023学年第一学期期末试卷
- 西京学院《新媒体短视频运营实训》2023-2024学年第一学期期末试卷
- 西京学院《前端开发技术》2021-2022学年期末试卷
- 颌下腺结石课件
- 西京学院《句法学概论》2022-2023学年期末试卷
- 2024年政府办事-非政府组织知识笔试参考题库含答案
- 餐厅、食堂餐饮服务方案(技术标)
- 营区物业服务投标方案(技术方案)
- 工业厂房设计规划方案
- 安全生产检查咨询服务投标方案(技术方案)
- 急性粒细胞白血病护理查房
- 公司安全部门简介
- 危废仓库建筑合同
- 静疗相关血管解剖知识课件
- 中医外科临床诊疗指南 烧伤
- 物业公司消防知识培训方案
评论
0/150
提交评论