版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024年广东省肇庆市高要区金利镇朝阳教育集团八年级数学第二学期期末检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.如果a>b,下列各式中正确的是()A.ac>bc B.a﹣3>b﹣3 C.﹣2a>﹣2b D.2.现有一组数据:3、4、5、5、6、6、6、6、7,若去掉其中一个数6则不受影响的是()A.众数 B.中位数 C.平均数 D.众数和中位数3.若函数的解析式为y=,则当x=2时对应的函数值是()A.4 B.3 C.2 D.04.已知点都在直线y=3x+b上,则的值的大小关系是()A. B. C. D.5.如图,l1∥l2,▱ABCD的顶点A在l1上,BC交l2于点E.若∠C=100°,则∠1+∠2=()A.100° B.90° C.80° D.70°6.周长为4cm的正方形对角线的长是()A.42cm B.22cm7.方程的根是()A. B. C. D.,8.下列代数式属于分式的是()A. B.3y C. D.+y9.如图,点M(xM,yM)、N(xN,yN)都在函数图象上,当0<xM<xN时,()A.yM<yN B.yM=yNC.yM>yN D.不能确定yM与yN的大小关系10.二次根式中字母a的取值范围是()A.a≥0 B.a≤0 C.a<0 D.a≤﹣2二、填空题(每小题3分,共24分)11.八年级(3班)同学要在广场上布置一个矩形花坛,计划用鲜花摆成两条对角线.如果一条对角线用了20盆红花,还需要从花房运来_______盆红花.如果一条对角线用了25盆红花,还需要从花房运来_______盆红花.12.如图,AB∥CD,则∠1+∠3—∠2的度数等于__________.13.如图,四边形ABCD是菱形,AC=24,BD=10,DH⊥AB于点H,则线段BH的长为______.14.如图,已知菱形的面积为24,正方形的面积为18,则菱形的边长是__________.15.如图,在△ABC中,∠CAB=70º,在同一平面内,将△ABC绕点逆时针旋转50º到△的位置,则∠=_________度.16.若分式的值为0,则x的值为_______.17.分解因式:=______.18.如图,在平面直角坐标系中,矩形的边一条动直线分别与将于点,且将矩形分为面积相等的两部分,则点到动直线的距离的最大值为__________.三、解答题(共66分)19.(10分)某校为加强学生安全意识,组织了全校1500名学生参加安全知识竞赛,从中抽取了部分学生成绩(得分取正整数,满分100分)进行统计,请根据尚为完成的频率和频数分布直方图,解答下列问题:分数段频数频率50.5~60.5160.0860.5~70.5400.270.5~80.5500.2580.5~90.5m0.3590.5~100.524n(1)这次抽取了______名学生的竞赛成绩进行统计,其中m=______,n=______;(2)补全频数分布直方图;(3)若成绩在70分以下(含70分)的学生为安全意识不强,有待进一步加强安全教育,则该校安全意识不强的学生约有多少人?20.(6分)我市开展“美丽自贡,创卫同行”活动,某校倡议学生利用双休日在“花海”参加义务劳动,为了解同学们劳动情况,学校随机调查了部分同学的劳动时间,并用得到的数据绘制了不完整的统计图,根据图中信息回答下列问题:(1)将条形统计图补充完整;(2)扇形图中的“1.5小时”部分圆心角是多少度?(3)求抽查的学生劳动时间的众数、中位数.21.(6分)某社区计划对面积为1200m2的区域进行绿化.经投标,由甲、乙两个工程队来完成,已知甲队每天能完成绿化的面积是乙队每天能完成绿化面积的2倍,并且在独立完成面积为400m2区域的绿化时,甲队比乙队少用4天.(1)甲、乙两施工队每天分别能完成绿化的面积是多少?(2)设先由甲队施工x天,再由乙队施工y天,刚好完成绿化任务,求y与x的函数解析式;(3)在(2)的情况下,若甲队绿化费用为1600元/天,乙队绿化费用为700元/天,在施工过程中每天需要支付高温补贴a元(100≤a≤300),且工期不得超过14天,则如何安排甲,乙两队施工的天数,使施工费用最少?22.(8分)如图,抛物线与轴交于,(在的左侧),与轴交于点,抛物线上的点的横坐标为3,过点作直线轴.(1)点为抛物线上的动点,且在直线的下方,点,分别为轴,直线上的动点,且轴,当面积最大时,求的最小值;(2)过(1)中的点作,垂足为,且直线与轴交于点,把绕顶点旋转45°,得到,再把沿直线平移至,在平面上是否存在点,使得以,,,为顶点的四边形为菱形?若存在直接写出点的坐标;若不存在,说明理由.23.(8分)如图,在平面直角坐标系中,直线与轴,轴分别交于点,点。(1)求点和点的坐标;(2)若点在轴上,且求点的坐标。(3)在轴是否存在点,使三角形是等腰三角形,若存在。请求出点坐标,若不存在,请说明理由。24.(8分)甲、乙两台包装机同时包装的糖果,从中各抽出袋,测得实际质量(g)如下:甲:;乙:.(1)分别计算两组数据的平均数(结果四舍五入保留整数)和方差;(2)哪台包装机包装糖果的质量比较稳定(方差公式:)25.(10分)某校在招聘数学教师时以考评成绩确定人选.甲、乙两位高校毕业生的各项考评成绩如下.如果按笔试成绩占30%、模拟上课占60%、答辩占10%来计算各人的考评成绩,那么谁将优先录取?考评项目成绩/分甲乙理论知识(笔试)8895模拟上课9590答辩889026.(10分)如图1,将边长为1的正方形ABCD压扁为边长为1的菱形ABCD.在菱形ABCD中,∠A的大小为α,面积记为S.(1)请补全下表:30°45°60°90°120°135°150°S1(2)填空:由(1)可以发现正方形在压扁的过程中,菱形的面积随着∠A大小的变化而变化,不妨把菱形的面积S记为S(α).例如:当α=30°时,;当α=135°时,.由上表可以得到(______°);(______°),…,由此可以归纳出.(3)两块相同的等腰直角三角板按如图的方式放置,AD=,∠AOB=α,试探究图中两个带阴影的三角形面积是否相等,并说明理由(注:可以利用(2)中的结论).
参考答案一、选择题(每小题3分,共30分)1、B【解析】
根据不等式的性质对各选项分析判断即可得解.【详解】解:A、a>b不等式两边都乘以c,c的正负情况不确定,所以ac>bc不一定成立,故本选项错误;
B、a>b不等式的两边都减去3可得a-3>b-3,故本选项正确;
C、a>b不等式的两边都乘以-2可得-2a<-2b,故本选项错误;
D、a>b不等式两边都除以2可得,故本选项错误.
故选:B.【点睛】本题主要考查了不等式的基本性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.2、A【解析】
根据众数、平均数和中位数的定义分别对每一项进行分析,即可得出答案.【详解】A、这组数据3、4、5、5、6、6、6、6、7的众数是6,若去掉其中一个数6时,众数还是6,故本选项正确;
B、原数据的中位数是6,若去掉其中一个数6时,中位数是=5.5,故本选项错误;
C、原数据的平均数是,若去掉其中一个数6时,平均数是,故本选项错误;
D、众数不变,中位数发生改变,故本选项错误;
故选A.【点睛】考查了确定一组数据的中位数、平均数和众数的能力.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.3、A【解析】
把x=2代入函数解析式y=,即可求出答案.【详解】把x=2代入函数解析式y=得,故选A.【点睛】本题考查的是函数值的求法.将自变量的值x=2代入函数解析式并正确计算是解题的关键.4、C【解析】
先根据直线y=1x+b判断出函数图象的增减性,再根据各点横坐标的大小进行判断即可.【详解】解:∵直线y=1x+b,k=1>0,
∴y随x的增大而增大,
又∵-2<-1<1,
∴y1<y2<y1.
故选:C.【点睛】本题考查的是一次函数的增减性,即一次函数y=kx+b(k≠0)中,当k>0,y随x的增大而增大;当k<0,y随x的增大而减小.5、C【解析】
由平行四边形的性质得出∠BAD=∠C=100°,AD∥BC,由平行线的性质得出∠2=∠ADE,∠ADE+∠BAD+∠1=180°,得出∠1+∠2=180°-∠BAD=80°即可.【详解】解:∵四边形ABCD是平行四边形,
∴∠BAD=∠C=100°,AD∥BC,
∴∠2=∠ADE,
∵l1∥l2,
∴∠ADE+∠BAD+∠1=180°,
∴∠1+∠2=180°-∠BAD=80°;
故选:C.【点睛】本题考查了平行四边形的性质、平行线的性质;熟练掌握平行四边形的性质和平行线的性质是解题的关键.6、D【解析】
先根据正方形的性质得到正方形的边长为1cm,然后根据勾股定理得到正方形对角线的长.【详解】解:∵正方形的周长为4cm,∴正方形的边长为1cm,∴正方形的对角线的长为12+12故选:D.【点睛】本题考查了正方形的性质和勾股定理,根据正方形的四条边相等得出直角三角形的两直角边长是解决此题的关键.7、D【解析】
此题用因式分解法比较简单,提取公因式,可得方程因式分解的形式,即可求解.【详解】解:x2−x=0,x(x−1)=0,解得x1=0,x2=1.故选:D.【点睛】本题考查了一元二次方程的解法,解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法,此题方程两边公因式较明显,所以本题运用的是因式分解法.8、C【解析】
判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.【详解】解:A.不是分式,故本选项错误,B.3y不是分式,故本选项错误,C.是分式,故本选项正确,D.+y不是分式,故本选项错误,故选:C.【点睛】本题主要考查分式的概念,分式与整式的区别主要在于:分母中是否含有未知数.9、C【解析】
利用图象法即可解决问题;【详解】解:观察图象可知:当时,故选:C.【点睛】本题考查反比例函数图象上的点的特征,解题的关键是读懂图象信息,学会利用图象解决问题,属于中考常考题型.10、B【解析】
根据被开方数是非负数,可得答案.【详解】由题意,得﹣2a≥1,解得a≤1.故选B.【点睛】本题考查了二次根式有意义的条件,熟知二次根式的被开方数是是非负数是解题的关键.二、填空题(每小题3分,共24分)11、201【解析】
根据矩形的对角线相等且互相平分,即可得出结果.【详解】解:如果一条对角线用了20盆红花,还需要从花房运来20盆红花;理由如下:
∵矩形的对角线互相平分且相等,
∴一条对角线用了20盆红花,
∴还需要从花房运来红花20盆;
如果一条对角线用了25盆红花,还需要从花房运来1盆红花;理由如下:
一条对角线用了25盆红花,中间一盆为对角线交点,25-1=1,
∴还需要从花房运来红花1盆,
故答案为:20,1.【点睛】本题考查矩形的性质,解题关键是熟练掌握矩形的对角线互相平分且相等的性质.12、180°【解析】
解:∵AB∥CD∴∠1=∠EFD∵∠2+∠EFC=∠3∠EFD=180°-∠EFC∴∠1+∠3—∠2=180°故答案为:180°13、【解析】解:∵四边形ABCD是菱形,AC=24,BD=10,∴AO=12,OD=5,AC⊥BD,∴AD=AB==13,∵DH⊥AB,∴AO×BD=DH×AB,∴12×10=13×DH,∴DH=,∴BH==.故答案为:.14、1【解析】
根据正方形的面积可用对角线进行计算解答即可.【详解】解:如图,连接AC、BD,相交于点O,∵正方形AECF的面积为18,∴AC=,∴AO=3,∵菱形ABCD的面积为24,∴BD=,∴BO=4,∴在Rt△AOB中,.故答案为:1.【点睛】此题考查正方形的性质,关键是根据正方形和菱形的面积进行解答.15、10【解析】
根据旋转的性质找到对应点、对应角进行解答.【详解】∵△ABC绕点A逆时针旋转50°得到△AB′C′,∴∠BAB′=50°,又∵∠BAC=70°,∴∠CAB′=∠BAC-∠BAB′=1°.故答案是:1.【点睛】本题考查旋转的性质:旋转变化前后,对应线段、对应角分别相等,图形的大小、形状都不改变.要注意旋转的三要素:①定点--旋转中心;②旋转方向;③旋转角度.16、-1【解析】
根据分式的值为零的条件可以求出x的值.【详解】解:根据题意得:,解得:x=-1.
故答案为:-1.【点睛】若分式的值为零,需同时具备两个条件:(1)分子为2;(2)分母不为2.这两个条件缺一不可.17、x(x+2)(x﹣2).【解析】试题分析:==x(x+2)(x﹣2).故答案为x(x+2)(x﹣2).考点:提公因式法与公式法的综合运用;因式分解.18、【解析】
设M,N为CO,EF中点,点到动直线的距离为ON,求解即可.【详解】∵∴SOABC=12∵将矩形分为面积相等的两部分∴SCEOF=×(CE+OF)×2=6∴CE+OF=6设M,N为CO,EF中点,∴MN=3点到动直线的距离的最大值为ON=故答案.【点睛】本题考查的是的动点问题,熟练掌握最大距离的算法是解题的关键三、解答题(共66分)19、(1)200,70,0.12;(2)详见解析;(3)420【解析】
(1)根据50.5~60.5的频数和频率先求出总数,再根据频数、频率和总数之间的关系分别求出m、n的值;(2)根据(1)的结果可补全统计图;(3)用全校的总人数乘以成绩在70分以下(含70分)的学生所占的百分比,即可得出答案.【详解】解:(1)根据题意得:=200(名),m=200×0.35=70(名),n==0.12;故答案为:200,70,0.12;(2)根据(1)补图如下:(3)根据题意得:1500×(0.08+0.2)=420(人),答:该校安全意识不强的学生约有420人.【点睛】此题主要考查了频数分布直方图、频数分布表、利用样本估计总体,关键是读懂频数分布直方图,能利用统计图获取信息;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.20、(1)详见解析;(2)144°;(3)众数为1.5小时、中位数为1.5小时.【解析】试题分析:(1)根据学生劳动“1小时”的人数除以占的百分比,求出总人数,(2)进而求出劳动“1.5小时”的人数,以及占的百分比,乘以360即可得到结果;(3)根据统计图中的数据确定出学生劳动时间的众数与中位数即可.解:(1)根据题意得:30÷30%=100(人),∴学生劳动时间为“1.5小时”的人数为100﹣(12+30+18)=40(人),补全统计图,如图所示:(2)根据题意得:40%×360°=144°,则扇形图中的“1.5小时”部分圆心角是144°;(3)根据题意得:抽查的学生劳动时间的众数为1.5小时、中位数为1.5小时.21、(1)甲、乙两施工队每天分别能完成绿化的面积是100m2、50m2;(2)y=24-2x;(3)当100≤a≤200时,甲队施工10天,乙队施工4天费用最小,为18800+14a,当200≤a≤300时,甲队施工11天,乙队施工2天费用最小,为19000+12a【解析】
(1)设乙施工队每天能完成绿化的面积是xm2,则甲施工队每天能完成绿化的面积是2xm2,根据题意列出分式方程即可求解;(2)根据总社区计划对面积为1200m2,即可列出函数关系式;(3)先根据工期不得超过14天,求出x的取值,再根据列出总费用w的函数关系式,即可求解.【详解】(1)设乙施工队每天能完成绿化的面积是xm2,则甲施工队每天能完成绿化的面积是2xm2,根据题意,解得x=50,经检验,x=50是方程的解,故甲、乙两施工队每天分别能完成绿化的面积是100m2、50m2;(2)依题意得100x+50y=1200,化简得y=24-2x,故求y与x的函数解析式为y=24-2x;(3)∵工期不得超过14天,∴x+y≤14,0≤x≤14,0≤y≤14即x+24-2x≤14,解得x≥10,∴x的取值为10≤x≤12;设总施工费用为w,则当x=10时,w=(1600+a)×10+(700+a)×4=18800+14a,当x=11时,w=(1600+a)×11+(700+a)×2=19000+12a当x=12时,w=(1600+a)×12=19200+12a,∵100≤a≤300,经过计算得当100≤a≤200时,甲队施工10天,乙队施工4天费用最小,为18800+14a,当200≤a≤300时,甲队施工11天,乙队施工2天费用最小,为19000+12a【点睛】此题主要考查一次函数的应用,解题的关键是根据题意找到等量关系进行求解.22、(1)(2),,,【解析】
(1)根据题意求得点、、、的坐标,进而求得直线和直线解析式.过点作轴垂线交于点,设点横坐标为,即能用表示、的坐标进而表示的长.由得到关于的二次函数,即求得为何值时面积最大,求得此时点坐标.把点向上平移的长,易证四边形是平行四边形,故有.在直线的上方以为斜边作等腰,则有.所以,其中的长为定值,易得当点、、在同一直线上时,线段和的值最小.又点是动点,,由垂线段最短可知过点作的垂线段时,最短.求直线、解析式,联立方程组即求得点坐标,进而求得的长.(2)先求得,,的坐标,可得是等腰直角三角形,当绕逆时针旋转再沿直线平移可得△,根据以,,,为顶点的四边形为菱形,可得,,,,即可求得的坐标,当绕顺时针旋转再沿直线平移可得△,根据以,,,为顶点的四边形为菱形,可得,,即可求得的坐标.【详解】解:(1)如图1,过点作轴于点,交于点,在上截取,连接,以为斜边在直线上方作等腰,过点作于点时,时,解得:,,直线解析式为抛物线上的点的横坐标为3,直线点在轴上,点在直线上,轴设抛物线上的点,当时,最大,,,四边形是平行四边形等腰中,为斜边,当点、、在同一直线上时,最小设直线解析式为解得:直线设直线解析式为解得:直线解得:,最小值为(2),,直线解析式为:,,,,,是等腰直角三角形,如图2,把绕顶点逆时针旋转,得到△,,,把△沿直线平移至△,连接,则直线解析式为,直线解析式为,显然以,,,为顶点的四边形为菱形,不可能为边,只能以、为邻边构成菱形,,,,如图3,把绕顶点顺时针旋转,得到△,,,把△沿直线平移至△,连接,,显然,,,,以,,,为顶点的四边形为菱形,只能为对角线,,.综上所述,点的坐标为:,,,.【点睛】本题考查了二次函数的图象和性质,二次函数最值应用,线段和最小值问题,待定系数法求函数解析式,平移、旋转等几何变换,等腰直角三角形性质,菱形性质等知识点,能熟练运用相关的性质定理是解题的关键.23、(1);(2);(3)在轴上存在点使为等腰三角形【解析】
(1)分别代入y=0,x=0,求出与之对应的x,y值,进而可得出点A,B的坐标;
(2)由三角形的面积公式结合S△BOP=S△AOB,可得出OP=OA,进而可得出点P的坐标;
(3)由OA,OB的长可求出AB的长,分AB=AM,BA=BM,MA=MB三种情况,利用等腰三角形的性质可求出点M的坐标.【详解】解:(1)当y=0时,-2x+4=0,解得:x=2,
∴点A的坐标为(2,0);
当x=0时,y=-2x+4=4,
∴点B的坐标为(0,4).(2))∵点P在x轴上,且S△BOP=S△AOB,
∴OP=OA=1,
∴点P的坐标为(-1,0)或(1,0).(3))∵OB=4,OA=2,
∴AB=分三种情况考虑(如图所示):
①当AB=AM时,OM=OB=4,
∴点M1的坐标为(0,-4);
②当BA=BM时,BM=2,
∴点M2的坐标为(0,4+2),点M3的坐标为(0,4-2);
③当MA=MB时,设OM=a,则BM=AM=4-a,
∴AM2=OM2+OA2,即(4-a)2=a2+22,
∴a=,
∴点M4的坐标为(0,).
综上所述:在y轴上存在点M,使三角形MAB是等腰三角形,点M坐标为(0,-4),(0,4+2),(0,4-2)和(0,).【点睛】本题考查一次函数图象上点的坐标特征、三角形的面积、勾股定理以及等腰三角形的性质,解题的关键是:(1)利用一次函数图象上点的坐标特征,求出点A,B的坐标;(2)利用两三角形面积间的关系,找出OP的长;(3)分AB=AM,BA=BM,MA=MB三种情况,利用等腰三角形的性质求出点M的坐标.24、(1),,,;(2)乙包装机包装的质量比较稳定.【解析】
(1)根据平均数就是对每组数求和后除以数的个数;根据方差公式计算即可;
(2)方差大说明这组数据波动大,方差小则波动小,就比较稳定.依此判断即可.【详解】解:(1),;,;(2)因为所以乙包装机包装袋糖果的质量比较稳
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 旅游酒店项目策划方案
- 葡萄酒生产企业生产现场类隐患排查项目清单、基础管理类隐患排查项目清单
- 酒厂传统营销方案
- 浅析债务加入概念、类型、契约
- 统编版2024-2025学年四年级语文上册期中素养测评基础卷 (含答案)
- 福建省漳州市华安县第一中学2024-2025学年高三上学期10月期中联考数学试题(含答案)
- 辽宁行政职业能力模拟65
- 安徽申论B类模拟67
- 关于成立文创公司商业计划书
- 地方公务员广东申论256
- 2024中国铁路集团全国招聘高频考题难、易错点模拟试题(共500题)附带答案详解
- (全册各类齐全)二年级数学上册100道口算题大全54份(100题)
- Module 4 Unit 8 A trip to Hong Kong.(教学设计)-2024-2025学年教科版(广州)英语六年级上册
- 2024至2030年中国少儿口才培训行业竞争格局及投资战略规划研究报告
- 3公民意味着什么第一课时 教学设计-2024-2025学年道德与法治六年级上册统编版
- 湖北机场集团限公司2024年春季校园招聘【35人】(高频重点提升专题训练)共500题附带答案详解
- 2024年秋季人教版新教材七年级上册语文全册教案(名师教学设计简案)
- 河南省附属绿地绿化规划设计规范
- 2024中华人民共和国农村集体经济组织法详细解读课件
- 2023年中级会计实务试题及答案大全
- T-CPQS C010-2024 鉴赏收藏用潮流玩偶及类似用途产品
评论
0/150
提交评论