版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届广东省深圳市龙岗区大鹏新区华侨中学数学八年级下册期末统考模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每小题3分,共30分)1.若方程有增根,则a的值为()A.1 B.2 C.3 D.02.如图,等边三角形的边长为4,点是△ABC的中心,,的两边与分别相交于,绕点顺时针旋转时,下列四个结论正确的个数是()①;②;③;④周长最小值是9.A.1个 B.2个 C.3个 D.4个3.函数y=的自变量x的取值范围是()A.x≥0且x≠2 B.x≥0 C.x≠2 D.x>24.如图,△ABC的周长为28,点D,E都在边BC上,∠ABC的平分线垂直于AE,垂足为Q,∠ACB的平分线垂直于AD,垂足为P,若BC=12,则PQ的长为()A.1 B.2 C.3 D.45.如图,点A,B,E在同一条直线上,正方形ABCD,BEFG的面积分别为m,n,H为线段DF的中点,则BH的长为()A. B. C. D.6.在平面直角坐标系中,已知点A(O,1),B(1,2),点P在轴上运动,当点P到A、B两点的距离之差的绝对值最大时,该点记为点P1,当点P到A、B两点的距离之和最小时,该点记为点P2,以P1P2为边长的正方形的面积为A.1 B. C. D.57.下列性质中,菱形具有而矩形不一定具有的是()A.对角线相等 B.对角线互相平分 C.对角线互相垂直 D.邻边互相垂直8.若a>b成立,则下列不等式成立的是()A.-a>-b B.-a+1>-b+1C.-a-1>-9.最早记载勾股定理的我国古代数学名著是()A.《九章算术》 B.《周髀算经》 C.《孙子算经》 D.《海岛算经》10.下列说法中,不正确的是()A.两组对边分别平行的四边形是平行四边形B.对角线互相平分且垂直的四边形是菱形C.一组对边平行另外一组对边相等的四边形是平行四边形D.有一组邻边相等的矩形是正方形二、填空题(每小题3分,共24分)11.若代数式在实数范围内有意义,则x的取值范围是_______.12.如图,E为△ABC中AB边的中点,EF∥AC交BC于点F,若EF=3cm,则AC=____________.13.在5张完全相同的卡片上分别画上等边三角形、平行四边形、直角梯形、正方形和圆.在看不见图形的情况下随机摸出1张,这张卡片上的图形是中心对称图形的概率是________.14.因式分解:________.15.直线y=x+2与x轴的交点坐标为___________.16.计算:____________.17.今年全国高考报考人数是10310000,将10310000科学记数法表示为_____.18.(2017四川省德阳市)某校欲招聘一名数学老师,甲、乙两位应试者经审查符合基本条件,参加了笔式和面试,他们的成绩如右图所示,请你按笔试成绩40%,面试成绩点60%选出综合成绩较高的应试者是____.三、解答题(共66分)19.(10分)如图,在▱ABCD中,E、F为对角线BD上的两点,且BE=DF.求证:∠BAE=∠DCF.20.(6分)如图,在平行四边形ABCD中,E,F分别是AB,CD的中点,DE,BF与对角线AC分别交于点M,N,连接MF,NE.(1)求证:DE∥BF(2)判断四边形MENF是何特殊的四边形?并对结论给予证明;21.(6分)如图,在△ABC中,AD为BC边上的中线,点E是AD的中点,过点A作AF∥BC交BE的延长线于点F,连接CF.(1)四边形AFCD是什么特殊的四边形?请说明理由.(2)填空:①若AB=AC,则四边形AFCD是_______形.②当△ABC满足条件______时,四边形AFCD是正方形.22.(8分)勾股定理神秘而美妙,它的证法多样,其巧妙各有不同,其中的“面积法”给了小聪以灵感,他惊喜的发现,当两个全等的直角三角形如图1或图1摆放时,都可以用“面积法”来证明,请你利用图1或图1证明勾股定理(其中∠DAB=90°)求证:a1+b1=c1.23.(8分)如图,AB是⊙O的直径,AC⊥AB,E为⊙O上的一点,AC=EC,延长CE交AB的延长线于点D.(1)求证:CE为⊙O的切线;(2)若OF⊥AE,OF=1,∠OAF=30°,求图中阴影部分的面积.(结果保留π)24.(8分)如图,菱形ABCD的边长为2,,点E为BC边的中点,点P为对角线AC上一动点,则PB+PE的最小值为_____.25.(10分)如图,在平面直角坐标系中,矩形OABC的顶点A在y轴的正半轴上,点C在x轴的正半轴上,线段OA,OC的长分别是m,n且满足(m-6)2+=0,点D是线段OC上一点,将△AOD沿直线AD翻折,点O落在矩形对角线AC上的点E处(1)求线段OD的长(2)求点E的坐标(3)DE所在直线与AB相交于点M,点N在x轴的正半轴上,以M、A、N、C为顶点的四边形是平行四边形时,求N点坐26.(10分)一个边数为的多边形中所有对角线的条数是边数为的多边形中所有对角线条数的6倍,求这两个多边形的边数.
参考答案一、选择题(每小题3分,共30分)1、A【解析】
先去分母,根据方程有增根,可求得x=2,再求出a.【详解】可化为x-1-a=3(x-2),因为方程有增根,所以,x=2,所以,2-1-a=0,解得a=1.故选A【点睛】本题考核知识点:分式方程的增根.解题关键点:理解增根的意义.2、B【解析】
首先连接OB、OC,如图,利用等边三角形的性质得∠ABO=∠OBC=∠OCB=30°,再证明∠BOD=∠COE,于是可判断△BOD≌△COE,利用全等三角形的对应边相等可对①进行判断;再利用S=S得到四边形ODBE的面积=S,则可对③进行判断,然后作OH⊥DE,则DH=EH,计算出S=OE,利用S△ODE随OE的变化而变化和四边形ODBE的面积为定值可对②进行判断,接下来由△BDE的周长=BC+DE=4+DE=4+OE,结合垂线段最短,当OE⊥BC时,OE最小,△BDE的周长最小,计算出此时OE的长则可对④进行判断.【详解】连接OB,OC,如图.∵△ABC为等边三角形,∴∠ABC=∠ACB=60°.∵点O是△ABC的中心,∴OB=OC,OB.OC分别平分∠ABC和∠ACB,∴∠ABO=∠OBC=∠OCB=30°,∴∠BOC=120°,即∠BOE+∠COE=120°,而∠DOE=120°,即∠BOE+∠BOD=120°,∴∠BOD=∠COE.在△BOD和△COE中,∠BOD=∠COE,BO=CO,∠OBD=∠OCE,∴△BOD≌△COE,∴BD=CE,OD=OE,所以①正确;∴S=S,∴四边形ODBE的面积=S=S=××4=,所以③正确;作OH⊥DE,如图,则DH=EH,∵∠DOE=120°,∴∠ODE=∠OEH=30°.∴OH=OE,HE=OH=OE,∴DE=OE,∴S△ODE=··OE·OE=OE,即S随OE的变化而变化,而四边形ODBE的面积为定值,∴S≠S,所以②错误;∵BD=CE,∴△BDE的周长=BD+BE+DE=CE+BE+DE=BC+DE=4+DE=4+OE,当OE⊥BC时,OE最小,△BDE的周长最小,此时OE=,∴△BDE周长的最小值=4+2=6,所以④错误.故选B.【点睛】此题考查旋转的性质、等边三角形的性质和全等三角形的判定与性质,解题关键是牢记旋转前、后的图形全等.3、A【解析】由被开方数大于等于0,分母不等于0可得x≥0且x−1≠0,即x≥0且x≠1.故选A.【考点】本题考查函数自变量的取值范围.4、B【解析】
根据已知条件证明△AQB≌△EQB及△APC≌△DPC,再得出PQ是△ADE的中位线,根据题中数据,根据DE=BE+CD-BC求出DE的长度,最后由中位线的性质即可求出PQ的长度.【详解】解:∵BQ平分∠ABC,∴∠ABQ=∠EBQ,∵BQ⊥AE,∴∠AQB=∠EQB=90°,在△AQB与△EQB中∴△AQB≌△EQB(ASA)∴AQ=EQ,AB=BE同理可得:△APC≌△DPC(ASA)∴AP=DP,AC=DC,∴P,Q分别为AD,AE的中点,∴PQ是△ADE的中位线,∴PQ=,∵△ABC的周长为28,BC=12,∴AB+AC=28-12=16,即BE+CD=16,∴DE=BE+CD-BC=16-12=4∴PQ=2故答案为:B.【点睛】本题主要考查了中位线的性质,涉及全等三角形的判定及三角形周长计算的问题,解题的关键是根据全等三角形的性质得出中位线.5、A【解析】
连接BD,BF可证△DBF为直角三角形,在通过直角三角形中斜边上的中线等于斜边的一半即可【详解】如图连接BD,BF;∵四边形ABCD和四边形BEFG都为正方形,AB=m,BE=n,∴∠DBF=90°,DB=,BF=,∴DF=,∵H为DF的中点,∴BH==,故选A【点睛】熟练掌握直角三角形中斜边上的中线等于斜边的一半和辅助线作法是解决本题的关键6、C【解析】
由三角形两边之差小于第三边可知,当A、B、P三点不共线时,|PA-PB|<AB,又因为A(0,1),B(1,2)两点都在x轴同侧,则当A、B、P三点共线时,|PA-PB|=AB,即|PA-PB|≤AB,所以当点P到A、B两点距离之差的绝对值最大时,点P在直线AB上.先运用待定系数法求出直线AB的解析式,再令y=0,求出x的值即可得到点P1的坐标;点A关于x轴的对称点为A',求得直线A'B的解析式,令y=0,即可得到点P2的坐标,进而得到以P1P2为边长的正方形的面积.【详解】由题意可知,当点P到A、B两点距离之差的绝对值最大时,点P在直线AB上.设直线AB的解析式为y=kx+b,∵A(0,1),B(1,2),∴,解得,∴y=x+1,令y=0,则0=x+1,解得x=-1.∴点P1的坐标是(-1,0).∵点A关于x轴的对称点A'的坐标为(0,-1),设直线A'B的解析式为y=k'x+b',∵A'(0,-1),B(1,2),,解得,∴y=3x−1,令y=0,则0=3x−1,解得x=,∴点P2的坐标是(,0).∴以P1P2为边长的正方形的面积为(+1)2=,【点睛】本题考查了最短距离问题,待定系数法求一次函数的解析式及x轴上点的坐标特征.根据三角形两边之差小于第三边得出当点P在直线AB上时,P点到A、B两点距离之差的绝对值最大,是解题的关键.7、C【解析】试题分析:A.对角线相等是矩形具有的性质,菱形不一定具有;B.对角线互相平分是菱形和矩形共有的性质;C.对角线互相垂直是菱形具有的性质,矩形不一定具有;D.邻边互相垂直是矩形具有的性质,菱形不一定具有.故选C.点评】本题考查菱形与矩形的性质,需要同学们对各种平行四边形的性质熟练掌握并区分.考点:菱形的性质;矩形的性质.8、D【解析】
根据不等式的性质解答即可.【详解】A.∵a>b,∴-a<-b,故不正确;B.∵a>b,∴-a<-b,∴-a+1<-b+1,故不正确;C.∵a>b,∴a-1>b-1D.∵a>b,∴a-1>b-1,正确;故选D.【点睛】本题考查了不等式的性质:①把不等式的两边都加(或减去)同一个整式,不等号的方向不变;②不等式两边都乘(或除以)同一个正数,不等号的方向不变;③不等式两边都乘(或除以)同一个负数,不等号的方向改变9、B【解析】
由于《周髀算经》是我国最古老的一部天文学著作,不但记载了勾股定理,还详细的记载了有关“勾股定理”公式以及证明方法,所以是最早有记载的.【详解】最早记载勾股定理的我国古代数学名著是《周髀算经》,故选:B.【点睛】考查了数学核心素养的知识,了解最早记载勾股定理的我国古代数学名著是解题的依据.10、C【解析】
根据平行四边形、菱形和正方形的判定方法进行分析可得.【详解】A.两组对边分别平行的四边形是平行四边形,正确;B.对角线互相平分且垂直的四边形是菱形,正确;C.一组对边平行,另一组对边相等的四边形有可能是等腰梯形,故错误;D.有一组邻边相等的矩形是正方形,正确.故选C.二、填空题(每小题3分,共24分)11、【解析】先根据二次根式有意义的条件列出关于x的不等式,求出x的取值范围即可.解:∵在实数范围内有意义,∴x-1≥2,解得x≥1.故答案为x≥1.本题考查的是二次根式有意义的条件,即被开方数大于等于2.12、1cm【解析】
根据平行线分线段成比例定理,得到BF=FC,根据三角形中位线定理求出AC的长.【详解】解:∵E为△ABC中AB边的中点,∴BE=EA.∵EF∥BC,∴=,∴BF=FC,则EF为△ABC的中位线,∴AC=2EF=1.故答案为1.【点睛】本题考查的是三角形中位线定理的运用和平行线分线段成比例定理的运用,掌握三角形的中位线平行于第三边且等于第三边的一半是解题的关键.13、【解析】
先找出中心对称图形有平行四边形、正方形和圆3个,再直接利用概率公式求解即可求得答案.【详解】解:张完全相同的卡片中中心对称图形有平行四边形、正方形和圆3个,随机摸出1张,卡片上的图形是中心对称图形的概率是,故答案为:.【点睛】本题主要考查了中心对称图形和概率公式.用到的知识点为:概率所求情况数与总情况数之比.14、【解析】
首先提出公因式,然后进一步利用完全平方公式进行因式分解即可.【详解】解:原式==.故答案为:.【点睛】本题主要考查了因式分解,熟练掌握相关方法及公式是解题关键.15、(-2,0)【解析】
令纵坐标为0代入解析式中即可.【详解】当y=0时,0=x+2,解得:x=-2,∴直线y=x+2与x轴的交点坐标为(-2,0).点睛:本题主要考查了一次函数与坐标轴的交点问题,关键在于理解在x轴上的点的纵坐标为0.16、﹣1【解析】
首先计算乘方,然后从左向右依次计算,求出算式的值是多少即可.【详解】原式=﹣8+1+1+3=﹣1.故答案为:﹣1.【点睛】本题考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.正确化简各数是解题的关键.17、【解析】
根据科学计数法的表示方法即可求解.【详解】解:将10310000科学记数法表示为.故答案为:.【点睛】此题主要考查科学计数法的表示,解题的关键是熟知科学计数法的表示方法.18、甲.【解析】解:甲的平均成绩为:80×40%+90×60%=86(分),乙的平均成绩为:85×40%+86×60%=85.6(分),因为甲的平均分数最高.故答案为:甲.三、解答题(共66分)19、证明见解析【解析】
要证明∠BAE=∠DCF,可以通过证明△ABE≌△CDF,由已知条件BE=DF,∠ABE=∠CDF,AB=CD得来.【详解】解:∵四边形ABCD是平行四边形∴AB∥CD,AB=CD∴∠ABE=∠CDF∵BE=DF∴△ABEC≌△CDF∴∠BAE=∠DCF【点睛】本题考查全等三角形的判定和性质,该题较为简单,是常考题,主要考查学生对全等三角形的性质和判定以及平行四边形性质的应用.20、(1)见解析;(2)平行四边形,证明见解析【解析】
(1)根据已知条件证明四边形DEBF为平行四边形,即可得到;(2)证明△FNC≌EMA,得到FN=EM,又FN∥EM,可得结果.【详解】解:(1)证明:在平行四边形ABCD中,AB∥CD,AB=CD,∵E,F分别是AB,CD的中点,∴DF=BE,DF∥BE,∴四边形DEBF为平行四边形,∴DE∥BF;(2)MENF为平行四边形,理由是:如图,∵DE∥BF,∴∠FNC=∠DMC=∠AME,又∵DC∥AB,∴∠ACD=∠CAB,又CF=AE=AB=CD,∴△FNC≌EMA(AAS),∴FN=EM,又FN∥EM,∴MENF为平行四边形.【点睛】本题考查了平行四边形的性质和判定,本题考查了平行四边形的判定和性质,难度不大,解题的关键是要找到合适的全等三角形.21、(1)平行四边形,理由见解析;(2)①矩形,②AB=AC,∠BAC=1.【解析】
(1)由“AAS”可证△AEF≌△DEB,可得AF=BD=CD,由平行四边形的判定可得四边形AFCD是平行四边形;
(2)①由等腰三角形的性质可得AD⊥BC,可证平行四边形AFCD是矩形;
②由等腰直角三角形的性质可得AD=CD=BD,AD⊥BC,可证平行四边形AFCD是正方形.【详解】解:(1)平行四边形理由如下:∵AF∥BC∴∠AFE=∠DBE,在ΔAFE与△DBE中∴ΔAFE≌ΔDBE∴AF=BD,又BD=CD∴AF=CD又AF∥CD∴四边形AFCD是平行四边形;(2)①∵AB=AC,AD是BC边上的中线
∴AD⊥BC,且四边形AFCD是平行四边形
∴四边形AFCD是矩形;
②当△ABC满足AB=AC,∠BAC=1°条件时,四边形AFCD是正方形.
理由为:∵AB=AC,∠BAC=1°,AD是BC边上的中线
∴AD=CD=BD,AD⊥BC
∵四边形AFCD是平行四边形,AD⊥BC
∴四边形AFCD是矩形,且AD=CD
∴四边形AFCD是正方形.
故答案为:(1)平行四边形,理由见解析;(2)①矩形,②AB=AC,∠BAC=1.【点睛】本题考查正方形的判定,平行四边形的判定以及全等三角形的判定与性质、三角形中线的性质等知识点,熟练掌握平行四边形的判定是解题关键.22、见解析.【解析】
图1,根据三个直角三角形的面积和等于梯形的面积列式化简即可得证;图1,连结DB,过点D作BC边上的高DF,则DF=EC=b﹣a,表示出S四边形ADCB=S△ACD+S△ABC,S四边形ADCB=S△ADB+S△DCB,两者相等,整理即可得证.【详解】利用图1进行证明:证明:∵∠DAB=90°,点C,A,E在一条直线上,BC∥DE,则CE=a+b,∵S四边形BCED=S△ABC+S△ABD+S△AED=ab+c1+ab,又∵S四边形BCED=(a+b)1,∴ab+c1+ab=(a+b)1,∴a1+b1=c1.利用图1进行证明:证明:如图,连结DB,过点D作BC边上的高DF,则DF=EC=b﹣a,∵S四边形ADCB=S△ACD+S△ABC=b1+ab.又∵S四边形ADCB=S△ADB+S△DCB=c1+a(b﹣a),∴b1+ab=c1+a(b﹣a),∴a1+b1=c1.【点睛】本题考查勾股定理的证明,解题的关键是利用构图法来证明勾股定理.23、(1)见解析;(2).【解析】
(1)首先连接OE,由AC⊥AB,,可得∠CAD=90°,又由AC=EC,OA=OE,易证得∠CAE=∠CEA,∠FAO=∠FEO,即可证得CD为⊙O的切线;(2)根据题意可知∠OAF=30°,OF=1,可求得AE的长,又由S阴影=-,即可求得答案.【详解】(1)证明:连接OE∵AC=EC,OA=OE∴∠CAE=∠CEA,∠FAO=∠FEO∵AC⊥AB,∴∠CAD=90°∴∠CAE+∠EAO=90°∴∠CEA+∠AEO=90°即∠CEA=90°∴OE⊥CD∴CE为⊙O的切线(2)解:∵∠OAF=30°,OF=1∴AO=2∴AF=即AE=∴∵∠AOE=120°,AO=2∴∴S阴影=【点睛】此题考查垂径定理及其推论,切线的判定与性质,扇形面积的计算,解题关键在于作辅助线.24、【解析】
根据ABCD是菱形,找出B点关于AC的对称点D,连接DE交AC于P,则DE就是PB+PE的最小值,根据勾股定理求出即可.【详解】解:如图,连接DE交AC于点P,连接DB,∵四边形ABCD是菱形,∴点B、D关于AC对称(菱形的对角线相互垂直平分),∴DP=BP,∴PB+PE的最小值即是DP+PE的最小值(等量替换),又∵两点之间线段最短,∴DP+PE的最小值的最小值是DE,又∵,CD=CB,∴△CDB是等边三角形,又∵点E为BC边的中点,∴DE⊥BC(等腰三角形三线合一性
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 大米专用冰箱产品供应链分析
- 带有时钟的收音机产业链招商引资的调研报告
- 医疗影像技术行业相关项目经营管理报告
- 乐器修理或维护行业营销策略方案
- 美容霜项目营销计划书
- 幼儿园行业经营分析报告
- 不动产出租服务行业营销策略方案
- 含药物的护肤液产品供应链分析
- 矿物绝缘电缆产品供应链分析
- 云计算法务服务行业营销策略方案
- 2024年社区工作者考试必考1000题及参考答案(模拟题)
- 跨平台移动应用开发技术
- 十二指肠溃疡伴穿孔的护理查房
- 2023-2024学年北京市房山区九年级上学期期中考试数学试卷含详解
- 市场营销策划(本)-形考任务三(第八~十章)-国开(CQ)-参考资料
- 公司留学展推广方案
- 新牛津译林版高中英语选择性必修一Unit1Food Matters单元复习课件
- 中信证券测评真题答案大全
- 部编版小学六年级道德与法治上册全册知识点汇编
- (2024版)小学六年级数学考试命题趋势分析
- 老年恶性肿瘤特点及治疗
评论
0/150
提交评论