


下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
学而优·教有学而优·教有方第六章实数知识要点【知识要点】知识点一平方根算术平方根概念:一般的如果一个正数x的平方等于a,即算术平方根的表示方法:非负数a的算术平方根记作平方根概念:如果一个数的平方等于,那么这个数就叫做的平方根或二次方根,即,那么x叫做a的平方根。平方根的性质与表示:表示:正数a的平方根用表示,叫做正平方根,也称为算术平方根,叫做a的负平方根。性质:一个正数有两个平方根:(根指数2省略)且他们互为相反数。0有一个平方根,为0,记作负数没有平方根平方根与算术平方根的区别与联系:知识点二立方根和开立方立方根概念:如果一个数的立方等于,即那么x叫做的立方根或三次方根,表示方法:数a的立方根记作,读作三次根号a立方根的性质:任何实数都有唯一确定的立方根。正数的立方根是一个正数。负数的立方根是一个负数。0的立方根是0.开立方概念:求一个数的立方根的运算。开平方的表示:(a取任何数)这说明三次根号内的负号可以移到根号外面。注意:0的平方根和立方根都是0本身。n次方根(扩展)概念:如果一个数的n次方(n是大于1的整数)等于a,这个数就叫做a的n次方根。当n为奇数时,这个数叫做a的奇次方根。当n为偶数时,这个数叫做a的偶次方根。性质:正数的偶次方根有两个:;0的偶次方根为0:;负数没有偶次方根。正数的奇次方根为正。0的奇次方根为0。负数的奇次方根为负。知识点三实数无理数的概念:无限不循环小数叫做无理数。实数概念:有理数和无理数统称为实数实数的分类:1.按属性分类:2.按符号分类实数和数轴上的点的对应关系(重点):实数和数轴上的点一一对应,即每一个实数都可以用数轴上的一个点表示.数轴上的每一个点都可以表示一个实数.的画法:画边长为1的正方形的对角线在数轴上表示无理数通常有两种情况:1.尺规可作的无理数,如2.尺规不可作的无理数,只能近似地表示,如π,1.010010001……实数大小比较的方法(常用):1)平方法2)根号法3)求差法实数的三个非负性及性质:
1.在实数范围内,正数和零统称为非负数。2.非负数有三种形式
①任何一个实数a的绝对值是非负数,即|a|≥0;②任何一个实数a的平方是非负数,即≥0;③任何非负数的算术平方根是非负数,即≥03.非
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 中国IT冷却系统行业市场调研分析及投资战略规划报告
- 2025年脉冲点焊机行业深度研究分析报告
- 2024-2025学年高中英语Unit4Sharing单元加餐练新人教版选修7
- 2025年可折叠电吹风项目投资可行性研究分析报告
- 2024-2025学年高中数学第三章空间向量与立体几何3.2.1用向量方法解决平行问题练习含解析新人教A版选修2-1
- 2024-2025学年高中地理第6章人类与地理环境的协调发展第2节中国的可持续发展实践练习新人教版必修2
- 2024-2025学年高中生物专题4酶的研究与应用课题2探讨加酶洗衣粉的洗涤效果练习含解析新人教版选修1
- 2025年光學打孔玻璃项目投资可行性研究分析报告
- 消毒行业五年发展洞察及发展预测分析报告
- 中国丁字裤行业投资潜力分析及行业发展趋势报告
- 中华人民共和国保守国家秘密法实施条例
- 2021年春新青岛版(五四制)科学四年级下册全册教学课件
- 班级管理(课件).ppt
- 秋装校服供货售后保障方案
- 铜杆生产线设备安装工程施工方案62p
- 恶性肿瘤化疗后重度骨髓抑制病人的护理论文
- cmu200_中文使用详细说明
- 廿四山年月日时定局吉凶(择日)
- 英语句子成分结构讲解
- 《地质灾害防治知识》PPT课件.ppt
- 招生代理合作协议书
评论
0/150
提交评论