2024届山东广饶县重点名校中考数学对点突破模拟试卷含解析_第1页
2024届山东广饶县重点名校中考数学对点突破模拟试卷含解析_第2页
2024届山东广饶县重点名校中考数学对点突破模拟试卷含解析_第3页
2024届山东广饶县重点名校中考数学对点突破模拟试卷含解析_第4页
2024届山东广饶县重点名校中考数学对点突破模拟试卷含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届山东广饶县重点名校中考数学对点突破模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(共10小题,每小题3分,共30分)1.如图,在△ABC中,∠ACB=90°,∠A=30°,BC=4,以点C为圆心,CB长为半径作弧,交AB于点D;再分别以点B和点D为圆心,大于BD的长为半径作弧,两弧相交于点E,作射线CE交AB于点F,则AF的长为()A.5 B.6 C.7 D.82.如图分别是某班全体学生上学时乘车、步行、骑车人数的分布直方图和扇形统计图(两图都不完整),下列结论错误的是()A.该班总人数为50 B.步行人数为30C.乘车人数是骑车人数的2.5倍 D.骑车人数占20%3.将一把直尺和一块含30°和60°角的三角板ABC按如图所示的位置放置,如果∠CDE=40°,那么∠BAF的大小为()A.10° B.15° C.20° D.25°4.下列四个多项式,能因式分解的是()A.a-1 B.a2+1C.x2-4y D.x2-6x+95.如图,将△OAB绕O点逆时针旋转60°得到△OCD,若OA=4,∠AOB=35°,则下列结论错误的是()A.∠BDO=60° B.∠BOC=25° C.OC=4 D.BD=46.如图,平行于x轴的直线与函数,的图象分别相交于A,B两点,点A在点B的右侧,C为x轴上的一个动点,若的面积为4,则的值为A.8 B. C.4 D.7.如图,把一块直角三角板的直角顶点放在直尺的一边上,若∠1=50°,则∠2的度数为().A.50° B.40° C.30° D.25°8.如图所示的几何体是一个圆锥,下面有关它的三视图的结论中,正确的是()A.主视图是中心对称图形B.左视图是中心对称图形C.主视图既是中心对称图形又是轴对称图形D.俯视图既是中心对称图形又是轴对称图形9.如图,是的直径,是的弦,连接,,,则与的数量关系为()A. B.C. D.10.如图,已知两个全等的直角三角形纸片的直角边分别为、,将这两个三角形的一组等边重合,拼合成一个无重叠的几何图形,其中轴对称图形有()A.3个; B.4个; C.5个; D.6个.二、填空题(本大题共6个小题,每小题3分,共18分)11.如图所示,在等腰△ABC中,AB=AC,∠A=36°,将△ABC中的∠A沿DE向下翻折,使点A落在点C处.若AE=,则BC的长是_____.12.已知a+b=4,a-b=3,则a2-b2=____________.13.计算:(1)()2=_____;(2)=_____.14.在平面直角坐标系的第一象限内,边长为1的正方形ABCD的边均平行于坐标轴,A点的坐标为(a,a),如图,若曲线y=(x>0)与此正方形的边有交点,则a的取值范围是_______.15.如图,为的直径,与相切于点,弦.若,则______.16.如果一个正多边形的中心角等于,那么这个正多边形的边数是__________.三、解答题(共8题,共72分)17.(8分)如图,AB∥CD,以点A为圆心,小于AC长为半径作圆弧,分别交AB,AC于E,F两点,再分别以E,F为圆心,大于EF长为半径作圆弧,两条圆弧交于点P,连接AP,交CD于点M,若∠ACD=110°,求∠CMA的度数______.18.(8分)先化简,再求值:x219.(8分)问题提出(1).如图1,在四边形ABCD中,AB=BC,AD=CD=3,∠BAD=∠BCD=90°,∠ADC=60°,则四边形ABCD的面积为_;问题探究(2).如图2,在四边形ABCD中,∠BAD=∠BCD=90°,∠ABC=135°,AB=22,BC=3,在AD、CD上分别找一点E、F,使得△BEF的周长最小,作出图像即可.20.(8分)水果店老板用600元购进一批水果,很快售完;老板又用1250元购进第二批水果,所购件数是第一批的2倍,但进价比第一批每件多了5元,问第一批水果每件进价多少元?21.(8分)如图,在平面直角坐标系中,直线与轴交于点,与轴交于点,与函数的图象的一个交点为.(1)求,,的值;(2)将线段向右平移得到对应线段,当点落在函数的图象上时,求线段扫过的面积.22.(10分)如图,分别以Rt△ABC的直角边AC及斜边AB向外作等边△ACD,等边△ABE,已知∠BAC=30°,EF⊥AB,垂足为F,连接DF试说明AC=EF;求证:四边形ADFE是平行四边形.23.(12分)如图,在△ABC中,AB=AC,以AB为直径作半圆⊙O,交BC于点D,连接AD,过点D作DE⊥AC,垂足为点E,交AB的延长线于点F.(1)求证:EF是⊙O的切线.(2)如果⊙O的半径为5,sin∠ADE=,求BF的长.24.如图,梯形ABCD中,AD∥BC,AE⊥BC于E,∠ADC的平分线交AE于点O,以点O为圆心,OA为半径的圆经过点B,交BC于另一点F.(1)求证:CD与⊙O相切;(2)若BF=24,OE=5,求tan∠ABC的值.

参考答案一、选择题(共10小题,每小题3分,共30分)1、B【解析】试题分析:连接CD,∵在△ABC中,∠ACB=90°,∠A=30°,BC=4,∴AB=2BC=1.∵作法可知BC=CD=4,CE是线段BD的垂直平分线,∴CD是斜边AB的中线,∴BD=AD=4,∴BF=DF=2,∴AF=AD+DF=4+2=2.故选B.考点:作图—基本作图;含30度角的直角三角形.2、B【解析】

根据乘车人数是25人,而乘车人数所占的比例是50%,即可求得总人数,然后根据百分比的含义即可求得步行的人数,以及骑车人数所占的比例.【详解】A、总人数是:25÷50%=50(人),故A正确;B、步行的人数是:50×30%=15(人),故B错误;C、乘车人数是骑车人数倍数是:50%÷20%=2.5,故C正确;D、骑车人数所占的比例是:1-50%-30%=20%,故D正确.由于该题选择错误的,故选B.【点睛】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.3、A【解析】

先根据∠CDE=40°,得出∠CED=50°,再根据DE∥AF,即可得到∠CAF=50°,最后根据∠BAC=60°,即可得出∠BAF的大小.【详解】由图可得,∠CDE=40°,∠C=90°,∴∠CED=50°,又∵DE∥AF,∴∠CAF=50°,∵∠BAC=60°,∴∠BAF=60°−50°=10°,故选A.【点睛】本题考查了平行线的性质,熟练掌握这一点是解题的关键.4、D【解析】试题分析:利用平方差公式及完全平方公式的结构特征判断即可.试题解析:x2-6x+9=(x-3)2.故选D.考点:2.因式分解-运用公式法;2.因式分解-提公因式法.5、D【解析】

由△OAB绕O点逆时针旋转60°得到△OCD知∠AOC=∠BOD=60°,AO=CO=4、BO=DO,据此可判断C;由△AOC、△BOD是等边三角形可判断A选项;由∠AOB=35°,∠AOC=60°可判断B选项,据此可得答案.【详解】解:∵△OAB绕O点逆时针旋转60°得到△OCD,

∴∠AOC=∠BOD=60°,AO=CO=4、BO=DO,故C选项正确;

则△AOC、△BOD是等边三角形,∴∠BDO=60°,故A选项正确;

∵∠AOB=35°,∠AOC=60°,∴∠BOC=∠AOC-∠AOB=60°-35°=25°,故B选项正确.

故选D.【点睛】本题考查旋转的性质,解题的关键是掌握旋转的性质:①对应点到旋转中心的距离相等.②对应点与旋转中心所连线段的夹角等于旋转角.③旋转前、后的图形全等及等边三角形的判定和性质.6、A【解析】【分析】设,,根据反比例函数图象上点的坐标特征得出,根据三角形的面积公式得到,即可求出.【详解】轴,,B两点纵坐标相同,设,,则,,,,故选A.【点睛】本题考查了反比例函数图象上点的坐标特征,三角形的面积,熟知点在函数的图象上,则点的坐标满足函数的解析式是解题的关键.7、B【解析】

解:如图,由两直线平行,同位角相等,可求得∠3=∠1=50°,根据平角为180°可得,∠2=90°﹣50°=40°.故选B.【点睛】本题考查平行线的性质,掌握两直线平行,同位角相等是解题关键.8、D【解析】

先得到圆锥的三视图,再根据中心对称图形和轴对称图形的定义求解即可.【详解】解:A、主视图不是中心对称图形,故A错误;

B、左视图不是中心对称图形,故B错误;

C、主视图不是中心对称图形,是轴对称图形,故C错误;

D、俯视图既是中心对称图形又是轴对称图形,故D正确.

故选:D.【点睛】本题考查简单几何体的三视图,中心对称图形和轴对称图形,熟练掌握各自的定义是解题关键.9、C【解析】

首先根据圆周角定理可知∠B=∠C,再根据直径所得的圆周角是直角可得∠ADB=90°,然后根据三角形的内角和定理可得∠DAB+∠B=90°,所以得到∠DAB+∠C=90°,从而得到结果.【详解】解:∵是的直径,∴∠ADB=90°.∴∠DAB+∠B=90°.∵∠B=∠C,∴∠DAB+∠C=90°.故选C.【点睛】本题考查了圆周角定理及其逆定理和三角形的内角和定理,掌握相关知识进行转化是解题的关键.10、B【解析】分析:直接利用轴对称图形的性质进而分析得出答案.详解:如图所示:将这两个三角形的一组等边重合,拼合成一个无重叠的几何图形,其中轴对称图形有4个.故选B.点睛:本题主要考查了全等三角形的性质和轴对称图形,正确把握轴对称图形的性质是解题的关键.二、填空题(本大题共6个小题,每小题3分,共18分)11、【解析】【分析】由折叠的性质可知AE=CE,再证明△BCE是等腰三角形即可得到BC=CE,问题得解.【详解】∵AB=AC,∠A=36°,∴∠B=∠ACB==72°,∵将△ABC中的∠A沿DE向下翻折,使点A落在点C处,∴AE=CE,∠A=∠ECA=36°,∴∠CEB=72°,∴BC=CE=AE=,故答案为.【点睛】本题考查了等腰三角形的判断和性质、折叠的性质以及三角形内角和定理的运用,证明△BCE是等腰三角形是解题的关键.12、1.【解析】

a2-b2=(a+b)(a-b)=4×3=1.故答案为:1.考点:平方差公式.13、【解析】

(1)直接利用分式乘方运算法则计算得出答案;(2)直接利用分式除法运算法则计算得出答案.【详解】(1)()2=;故答案为;(2)==.故答案为.【点睛】此题主要考查了分式的乘除法运算,正确掌握运算法则是解题关键.14、【解析】

因为A点的坐标为(a,a),则C(a﹣1,a﹣1),根据题意只要分别求出当A点或C点在曲线上时a的值即可得到答案.【详解】解:∵A点的坐标为(a,a),∴C(a﹣1,a﹣1),当C在双曲线y=时,则a﹣1=,解得a=+1;当A在双曲线y=时,则a=,解得a=,∴a的取值范围是≤a≤+1.故答案为≤a≤+1.【点睛】本题主要考查反比例函数与几何图形的综合问题,解此题的关键在于根据题意找到关键点,然后将关键点的坐标代入反比例函数求得确定值即可.15、1【解析】

利用切线的性质得,利用直角三角形两锐角互余可得,再根据平行线的性质得到,,然后根据等腰三角形的性质求出的度数即可.【详解】∵与相切于点,∴AC⊥AB,∴,∴,∵,∴,,∵,∴,∴.故答案为1.【点睛】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.16、12.【解析】

根据正n边形的中心角的度数为进行计算即可得到答案.【详解】解:根据正n边形的中心角的度数为,则n=360÷30=12,故这个正多边形的边数为12,故答案为:12.【点睛】本题考查的是正多边形内角和中心角的知识,掌握中心角的计算公式是解题的关键.三、解答题(共8题,共72分)17、∠CMA=35°.【解析】

根据两直线平行,同旁内角互补得出,再根据是的平分线,即可得出的度数,再由两直线平行,内错角相等即可得出结论.【详解】∵AB∥CD,∴∠ACD+∠CAB=180°.又∵∠ACD=110°,∴∠CAB=70°,由作法知,是的平分线,∴.又∵AB∥CD,∴∠CMA=∠BAM=35°.【点睛】本题考查了角平分线的作法和意义,平行线的性质等知识解决问题.解题时注意:两直线平行,内错角相等.18、12【解析】

这道求代数式值的题目,不应考虑把x的值直接代入,通常做法是先化简,然后再代入求值.【详解】解:原式=•﹣=﹣=﹣=,当x=1时,原式==.【点睛】本题考查了分式的化简求值,解题的关键是熟练的掌握分式的运算法则.19、(1)3,(2)见解析【解析】

(1)易证△ABD≌△CBD,再利用含30°的直角三角形求出AB、BD的长,即可求出面积.(2)作点B关于AD的对称点B’,点B关于CD的对应点B’’,连接B’B’’,与AD、CD交于EF,△AEF即为所求.【详解】(1)∵AB=BC,AD=CD=3,∠BAD=∠BCD=90°,∴△ABD≌△CBD(HL)∴∠ADB=∠CDB=∠ADC=30°,∴AB=∴S△ABD==∴四边形ABCD的面积为2S△ABD=(2)作点B关于AD的对称点B’,点B关于CD的对应点B’’,连接B’B’’,与AD、CD交于EF,△BEF的周长为BE+EF+BF=B’E+EF+B’’F=B’B’’为最短.故此时△BEF的周长最小.【点睛】此题主要考查含30°的直角三角形与对称性的应用,解题的关键是根据题意作出相应的图形进行求解.20、120【解析】

设第一批水果每件进价为x元,则第二批水果每件进价为(x+5)元,根据用1250元所购件数是第一批的2倍,列方程求解.【详解】解:设第一批水果每件进价为x元,则第二批水果每件进价为(x+5)元,由题意得,×2=,解得:x=120,经检验:x=120是原分式方程的解,且符合题意.答:第一批水果每件进价为120元.【点睛】本题考查了分式方程的应用,解题的关键是熟练的掌握分式方程的应用.21、(1)m=4,n=1,k=3.(2)3.【解析】

(1)把点,分别代入直线中即可求出m=4,再把代入直线即可求出n=1.把代入函数求出k即可;(2)由(1)可求出点B的坐标为(0,4),点B‘是由点B向右平移得到,故点B’的纵坐标为4,把它代入反比例函数解析式即可求出它的横坐标,根据平移的知识可知四边形AA’B’B是平行四边形,再根据平行四边形的面积计算公式计算即可.【详解】解:(1)把点,分别代入直线中得:-4+m=0,m=4,∴直线解析式为.把代入得:n=-3+4=1.∴点C的坐标为(3,1)把(3,1)代入函数得:解得:k=3.∴m=4,n=1,k=3.(2)如图,设点B的坐标为(0,y)则y=-0+4=4∴点B的坐标是(0,4)当y=4时,解得,∴点B’(,4)∵A’,B’是由A,B向右平移得到,∴四边形AA’B’B是平行四边形,故四边形AA’B’B的面积=4=3.【点睛】本题考查了一次函数与反比例函数的交点问题及函数的平移,利用数形结合思想作出图形是解题的关键.22、证明见解析.【解析】

(1)一方面Rt△ABC中,由∠BAC=30°可以得到AB=2BC,另一方面△ABE是等边三角形,EF⊥AB,由此得到AE=2AF,并且AB=2AF,从而可证明△AFE≌△BCA,再根据全等三角形的性质即可证明AC=EF.(2)根据(1)知道EF=AC,而△ACD是等边三角形,所以EF=AC=AD,并且AD⊥AB,而EF⊥AB,由此得到EF∥AD,再根据平行四边形的判定定理即可证明四边形ADFE是平行四边形.【详解】证明:(1)∵Rt△ABC中,∠BAC=30°,∴AB=2BC.又∵△ABE是等边三角形,EF⊥AB,∴AB=2AF.∴AF=BC.∵在Rt△AFE和Rt△BCA中,AF=BC,AE=BA,∴△AFE≌△BCA(HL).∴AC=EF.(2)∵△ACD是等边三角形,∴∠DAC=60°,AC=AD.∴∠DAB=∠DAC+∠BAC=90°.∴EF∥AD.∵AC=EF,AC=AD,∴EF=AD.∴四边形ADFE是平行四边形.考点:1.全等三角形的判定与性质;2.等边三角形的性质;3.平行四边形的判定.23、(1)答案见解析;(2).【解析】试题分析:(1)连接OD,AB为⊙O的直径得∠ADB=90°,由AB=AC,根据等腰三角形性质得AD平分BC,即DB=DC,则OD为△ABC的中位线,所以OD∥AC,而DE⊥AC,则OD⊥DE,然后根据切线的判定方法即可得到结论;(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论