福建省泉州七中学2024年八年级下册数学期末综合测试模拟试题含解析_第1页
福建省泉州七中学2024年八年级下册数学期末综合测试模拟试题含解析_第2页
福建省泉州七中学2024年八年级下册数学期末综合测试模拟试题含解析_第3页
福建省泉州七中学2024年八年级下册数学期末综合测试模拟试题含解析_第4页
福建省泉州七中学2024年八年级下册数学期末综合测试模拟试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

福建省泉州七中学2024年八年级下册数学期末综合测试模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.如图,已知菱形ABCD的周长是24米,∠BAC=30°,则对角线BD的长等于()A.6米 B.3米 C.6米 D.3米2.医学研究发现一种新病毒的直径约为0.000043毫米,则这个数用科学记数法表示为()A.0.43× B.0.43× C.4.3× D.4.3×3.漳州市政府为了鼓励市民绿色出行,投资了一批城市公共自行车,收费如下:第1小时内免费,1小时以上,每半小时收费0.5元(不到半小时按半小时计).马小跳刷卡时显示收费1.5元,则马小跳租车时间x的取值范围为()A.1<x≤1.5 B.2<x≤2.5 C.2.5<x≤3 D.3<x≤44.函数y=xx+3的自变量取值范围是(A.x≠0 B.x>﹣3 C.x≥﹣3且x≠0 D.x>﹣3且x≠05.甲,乙,丙,丁四位跨栏运动员在某天“110米跨栏”训练中,每人各跑5次,据统计,他们的平均成绩都是13.2秒,甲,乙,丙,丁成绩的方差分别是0.11,0.03,0.05,0.02,则当天这四位运动员“110米跨栏”训练成绩最稳定的是()A.甲 B.乙 C.丙 D.丁6.已知数据:1,2,0,2,﹣5,则下列结论错误的是()A.平均数为0 B.中位数为1 C.众数为2 D.方差为347.一元二次方程根的情况是A.有两个相等的实数根 B.有两个不相等的实数根C.没有实数根 D.不能确定8.抚顺市中小学机器人科技大赛中,有7名学生参加决赛,他们决赛的成绩各不相同,其中一名参赛选手想知道自己能否进入前4名,他除了知道自己成绩外还要知道这7名学生成绩的()A.中位数B.众数C.平均数D.方差9.下列视力表的部分图案中,既是轴对称图形亦是中心对称图形的是()A. B. C. D.10.下列约分计算结果正确的是()A. B. C. D.二、填空题(每小题3分,共24分)11.如图,四边形ABCD是菱形,对角线AC和BD相交于点O,AC=4cm,BD=8cm,则这个菱形的面积是_____cm1.12.如图,矩形ABCD中,AB=16cm,BC=8cm,将矩形沿AC折叠,点D落在点D′处,则重叠部分△AFC的面积为______.13.若是一元二次方程的两个实数根,则=__________.14.如图,正方形ABCD和正方形CEFG中,点D在CG上,BC=a,CE=b,H是AF的中点,那么CH的长是______.(用含a、b的代数式表示)15.一次跳远中,成绩在4.05米以上的人有8人,频率为0.4,则参加比赛的运动员共有____人.16.直接写出计算结果:(2xy)∙(-3xy3)2=_____.17.二次函数的图象的顶点是__________.18.如图,在宽为10m,长为30m的矩形地块上修建两条同样宽为1m的道路,余下部分作为耕地.根据图中数据计算,耕地的面积为m1.三、解答题(共66分)19.(10分)(1)因式分解:(x²+4)²-16x²;(2)先化简.再从-1,1,2选取一个合适的数代入求值.20.(6分)为迎接省“义务教育均衡发展验收”,某广告公司承担了制作宣传牌任务,安排甲、乙两名工人制作,由于乙工人采用了新式工具,其工作效率比甲工人提高了20%,同样制作30个宣传牌,乙工人比甲工人节省了一天时间:(1)求甲乙两名工人每天各制作多少个宣传牌?(2)现在需要这两名工人合作完成44个宣传牌制作在务,应如何分配,才能让两名工人同时完成任务?21.(6分)如图:、是锐角的两条高,、分别是、的中点,若EF=6,.(1)证明:;(2)判断与的位置关系,并证明你的结论;(3)求的长.22.(8分)如图,分别以Rt△ABC的直角边AC及斜边AB向外作等边△ACD,等边△ABE.已知∠ABC=60°,EF⊥AB,垂足为F,连接DF.(1)证明:△ACB≌△EFB;(2)求证:四边形ADFE是平行四边形.23.(8分)(课题研究)旋转图形中对应线段所在直线的夹角(小于等于的角)与旋转角的关系.(问题初探)线段绕点顺时针旋转得线段,其中点与点对应,点与点对应,旋转角的度数为,且.(1)如图(1)当时,线段、所在直线夹角为______.(2)如图(2)当时,线段、所在直线夹角为_____.(3)如图(3),当时,直线与直线夹角与旋转角存在着怎样的数量关系?请说明理由;(形成结论)旋转图形中,当旋转角小于平角时,对应线段所在直线的夹角与旋转角_____.(运用拓广)运用所形成的结论求解下面的问题:(4)如图(4),四边形中,,,,,,试求的长度.24.(8分)如图,网格中的图形是由五个小正方形组成的,根据下列要求画图(涂上阴影).(1)在图①中,添加一块小正方形,使之成为轴对称图形,且只有一条对称轴;(画一种情况即可)(2)在图②中,添加一块小正方形,使之成为中心对称图形,但不是轴对称图形;(3)在图③中,添加一块小正方形,使之成为既是中心对称图形又是轴对称图形.25.(10分)如图,在▱ABCD中,对角线AC、BD相交于点O,点E、F是AD上的点,且AE=EF=FD.连接BE、BF,使它们分别与AO相交于点G、H.(1)求EG:BG的值;(2)求证:AG=OG;(3)设AG=a,GH=b,HO=c,求a:b:c的值.26.(10分)已知直线的图象经过点和点(1)求的值;(2)求关于的方程的解(3)若、为直线上两点,且,试比较、的大小

参考答案一、选择题(每小题3分,共30分)1、C【解析】

由菱形ABCD的周长是24米,∠BAC=30°,易求得AB=6米,△ABD是等边三角形,继而求得答案.【详解】解:∵菱形ABCD的周长是24米,∠BAC=30°,∴AB=AD=24÷4=6(米),∠DAB=2∠BAC=60°,∴△ABD是等边三角形,∴BD=AB=6米.故选C.【点睛】此题考查了菱形的性质以及等边三角形的判定与性质.注意证得△ABD是等边三角形是解此题的关键.2、D【解析】

绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.000043毫米,则这个数用科学记数法表示为4.3×10-5毫米,故选:D.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.3、B【解析】

根据题意,可以列出相应的不等式组,从而可以求得x的取值范围.【详解】由题意可得,,解得,2<x≤2.5,故选B.【点睛】本题考查一元一次不等式组的应用,解答本题的关键是明确题意,列出相应的不等式组,注意题目中每半小时收费0.5元,也就是说每小时收费1元.4、B【解析】

由题意得:x+1>0,解得:x>-1.故选B.5、D【解析】

根据方差的定义,方差越小数据越稳定.【详解】∵0.02<0.03<0.05<0.11,∴丁的成绩的方差最小,∴当天这四位运动员“110米跨栏”的训练成绩最稳定的是丁。故选:D.【点睛】此题考查方差,解题关键在于掌握其定义6、D【解析】

根据平均数、方差的计算公式和中位数、众数的定义分别进行解答,即可得出答案.【详解】A.这组数据:1,2,0,2,﹣5的平均数是:(1+2+0+2-5)÷5=0,故本选项正确;B.把这组数按从小到大的顺序排列如下:-5,0,1,2,2,可观察1处在中间位置,所以中位数为1,故本选项正确;C.观察可知这组数中出现最多的数为2,所以众数为2,故本选项正确;D.s2=所以选D【点睛】本题考查众数,算术平均数,中位数,方差;熟练掌握平均数、方差的计算公式和中位数、众数的定义是解决本题的关键.由于它们的计算由易到难为众数、中位数、算术平方根、方差,所以考试时可按照这样的顺序对选项进行判断,例如本题前三个选项正确,直接可以选D,就可以不用计算方差了.7、C【解析】

由△=b2-4ac的情况进行分析.【详解】因为,△=b2-4ac=(-3)2-4×1×3=-3<0,所以,方程没有实数根.故选C【点睛】本题考核知识点:根判别式.解题关键点:熟记一元二次方程根判别式.8、A【解析】

7人成绩的中位数是第4名的成绩.参赛选手要想知道自己是否能进入前4名,只需要了解自己的成绩以及全部成绩的中位数,比较即可.【详解】由于总共有7个人,且他们的分数互不相同,第4的成绩是中位数,要判断是否进入前4名,故应知道中位数的多少,故选A.【点睛】本题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义,熟练掌握相关的定义是解题的关键.9、B【解析】

在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形;平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形叫做轴对称图形;据此分别对各选项图形加以判断即可.【详解】A:是轴对称图形,但不是中心对称图形,故不符合题意;B:是轴对称图形,也是中心对称图形,故符合题意;C:不是轴对称图形,是中心对称图形,故不符合题意;D:不是轴对称图形,也不是中心对称图形,故不符合题意;故选:B.【点睛】本题主要考查了轴对称图形与中心对称图形的识别,熟练掌握相关概念是解题关键.10、C【解析】

根据约分的定义逐项分析即可,根据分式的基本性质把分子、分母中除1以外的公因式约去,叫做分式的约分.【详解】A.的分子与分母没有公因式,不能约分,故不正确;B.的分子与分母没有公因式,不能约分,故不正确;C.,故正确;D.,故不正确;故选C.【点睛】本题考查了分式的约分,熟练掌握分式的基本性质是解答本题的关键.二、填空题(每小题3分,共24分)11、2.【解析】试题分析:根据菱形的面积等于对角线乘积的一半解答.试题解析:∵AC=4cm,BD=8cm,∴菱形的面积=×4×8=2cm1.考点:菱形的性质.12、1【解析】

因为BC为AF边上的高,要求△AFC的面积,求得AF即可,求证△AFD′≌△CFB,得BF=D′F,设D′F=x,则在Rt△AFD′中,根据勾股定理求x,∴AF=AB-BF.【详解】解:易证△AFD′≌△CFB,

∴D′F=BF,

设D′F=x,则AF=16-x,

在Rt△AFD′中,(16-x)2=x2+82,

解之得:x=6,

∴AF=AB-FB=16-6=10,故答案为:1.【点睛】本题考查了翻折变换-折叠问题,勾股定理的正确运用,本题中设D′F=x,根据直角三角形AFD′中运用勾股定理求x是解题的关键.13、-1【解析】

根据根与系数的关系即可求出答案.【详解】由根与系数的关系可知:x1+x2=﹣1,x1x2=﹣2,∴x1+x2+x1x2=﹣1故答案为﹣1.【点睛】本题考查了根与系数的关系,解题的关键是熟练运用根与系数的关系,本题属于基础题型.14、【解析】

连接AC、CF,根据正方形的性质得到∠ACF=90°,根据勾股定理求出AF的长,根据直角三角形中,斜边上的中线等于斜边的一半计算即可.【详解】解:连接AC、CF,在正方形ABCD和正方形CEFG中,∠ACG=45°,∠FCG=45°,∴∠ACF=90°,∵BC=a,CE=b,∴AC=a,CF=b,由勾股定理得,AF==,∵∠ACF=90°,H是AF的中点,∴CH=,故答案为:.【点睛】本题考查的是直角三角形的性质、勾股定理的应用、正方形的性质,掌握在直角三角形中,斜边上的中线等于斜边的一半是解题的关键.15、20【解析】

根据频率的计算公式即可得到答案.【详解】解:所以可得参加比赛的人数为20人.故答案为20.【点睛】本题主要考查频率的计算公式,这是数据统计的重点知识,必须掌握.16、18.【解析】

根据单项式与单项式相乘,把他们的系数分别相乘,相同字母的幂分别相加,其余字母连同他的指数不变,作为积的因式,计算即可.【详解】(2xy)•(-3xy3)2=(2×9)•(x•x2)•(y•y6)=18x3y7.【点睛】本题考查了单项式与单项式相乘.熟练掌握运算法则是解题的关键.17、【解析】

根据二次函数的解析式,直接即可写出二次函数的的顶点坐标.【详解】根据二次函数的解析式可得二次函数的顶点为:(5,8).故答案为(5,8)【点睛】本题主要考查二次函数的顶点坐标的计算,关键在于利用配方法构造完全平方式,注意括号内是减号.18、2.【解析】试题分析:由图可得出两条路的宽度为:1m,长度分别为:10m,30m,这样可以求出小路的总面积,又知矩形的面积,耕地的面积=矩形的面积-小路的面积,由此计算耕地的面积.由图可以看出两条路的宽度为:1m,长度分别为:10m,30m,所以,可以得出路的总面积为:10×1+30×1-1×1=49m1,又知该矩形的面积为:10×30=600m1,所以,耕地的面积为:600-49=2m1.故答案为2.考点:矩形的性质.三、解答题(共66分)19、(1);(2).【解析】

(1)先用平方差公式分解,再用完全平方公式二次分解;(2)把除法转化为乘法,并把分子、分母分解因式约分,然后从-1,1,2选取一个使原分式有意义的数代入计算即可.【详解】(1)(x²+4)²-16x²=(x²+4+4x)(x²+4-4x)=(x+2)²(x-2)²;(2)原式=,由题意,x≠±2且x≠1,∴当x=-1时,原式=.【点睛】本题考查了因式分解,分式的化简求值,熟练掌握因式分解的方法是解(1)的关键,熟练掌握分式的运算法则是解(2)的关键.20、(1)甲工人每天制作5个宣传牌,乙工人每天制作6个;(2)给甲分配制作20个,乙制作24个.【解析】

(1)设甲工人每天完成x个宣传牌,则乙工人每天完成1.2x个宣传牌,根据完成30个宣传牌工作,乙工人比甲工人节省了一天时间列出方程解答即可;

(2)根据(1)中求得的数据,设甲完成a个宣传牌,则乙完成(44-a)个宣传牌,根据所用时间相等列出方程解答即可.【详解】解:(1)设甲工人每天制作x个宣传牌,则乙工人每天制(1+20%)x=1.2x个,由题意得解得x=5经检验x=5是原方程的解且符合题意∴1.2x=6答:甲工人每天制作5个宣传牌,乙工人每天制作6个.(2)设甲完成a个宣传牌,则乙完成(44-a)个宣传牌,

由题意得:,

解得:a=20,

44-a=24,

答:给甲分配制作20个,乙制作24个,才能让两名工人同时完成任务.故答案为:(1)甲工人每天制作5个宣传牌,乙工人每天制作6个;(2)给甲分配制作20个,乙制作24个.【点睛】本题考查分式方程的实际运用、一元一次方程的实际运用,找出题目蕴含的数量关系是解决问题的关键.21、(1)证明见解析;(2)MN垂直平分EF,证明见解析;(3)MN=.【解析】

(1)依据BE、CF是锐角△ABC的两条高,可得∠ABE+∠A=90°,∠ACF+∠A=90°,进而得出∠ABE=∠ACF;(2)连接EM、FM,根据直角三角形斜边上的中线等于斜边的一半可得EM=FM=BC,再根据等腰三角形三线合一的性质解答;(3)求出EM、EN,然后利用勾股定理列式计算即可得解.【详解】解:(1)∵BE、CF是锐角△ABC的两条高,∴∠ABE+∠A=90°,∠ACF+∠A=90°,∴∠ABE=∠ACF;(2)MN垂直平分EF.证明:如图,连接EM、FM,∵BE、CF是锐角△ABC的两条高,M是BC的中点,∴EM=FM=BC,∵N是EF的中点,∴MN垂直平分EF;(3)∵EF=6,BC=24,∴EM=BC=×24=12,EN=EF=×6=3,由勾股定理得,MN=.【点睛】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,等腰三角形三线合一的性质,勾股定理,熟记性质并作辅助线构造出等腰三角形是解题的关键.22、(1)见详解;(2)见详解.【解析】

(1)由△ABE是等边三角形可知:AB=BE,∠EBF=60°,于是可得到∠EFB=∠ACB=90°,∠EBF=∠ABC,接下来依据AAS证明△ABC≌△EBF即可;(2)由△ABC≌△EBF可得到EF=AC,由△ACD是的等边三角形进而可证明AC=AD=EF,然后再证明∠BAD=90°,可证明EF∥AD,故此可得到四边形EFDA为平行四边形.【详解】解:(1)证明:∵△ABE是等边三角形,EF⊥AB,∴∠EBF=60°,AE=BE,∠EFB=90°.又∵∠ACB=90°,∠ABC=60°,∴∠EFB=∠ACB,∠EBF=∠ABC.∵BE=BA,∴△ABC≌△EBF(AAS).(2)证明:∵△ABC≌△EBF,∴EF=AC.∵△ACD是的等边三角形,∴AC=AD=EF,∠CAD=60°,又∵Rt△ABC中,∠ABC=60°,∠BAC=30°,∴∠BAD=∠BAC+∠CAD=90°,∴∠EFA=∠BAD=90°,∴EF∥AD.又∵EF=AD,∴四边形EFDA是平行四边形.【点睛】本题主要考查了平行四边形的判定、全等三角形的性质和判定、等边三角形的性质,解题的关键是掌握证明全等三角形的判定方法和证明平行四边形的判定方法.23、(1)90°;(2)60°;(3)互补,理由见解析;相等或互补;(4).【解析】

(1)通过作辅助线如图1,延长DC交AB于F,交BO于E,可以通过旋转性质得到AB=CD,OA=OC,BO=DO,证明△AOB≌△COD,进而求得∠B=∠D得∠BFE=∠EOD=90°(2)通过作辅助线如图2,延长DC交AB于F,交BO于E,同(1)得∠BFE=∠EOD=60°(3)通过作辅助线如图3,直线与直线所夹的锐角与旋转角互补,延长,交于点通过证明得,再通过平角的定义和四边形内角和定理,证得;形成结论:通过问题(1)(2)(3)可以总结出旋转图形中,当旋转角小于平角时,对应线段所在直线的夹角与旋转角相等或互补;(4)通过作辅助线如图:将绕点顺时针旋转,使得与重合,得到,连接,延长,交于点,可得,进一步得到△BDF是等边三角形,,再利用勾股定理求得.【详解】(1)解:(1)如图1,延长DC交AB于F,交BO于E,

∵α=90°

∴∠BOD=90°

∵线段AB绕点O顺时针旋转得线段CD,

∴AB=CD,OA=OC,BO=DO

∴△AOB≌△COD(SSS)

∴∠B=∠D

∵∠B=∠D,∠OED=∠BEF

∴∠BFE=∠EOD=90°

故答案为:90°

(2)如图2,延长DC交AB于F,交BO于E,

∵α=60°

∴∠BOD=60°

∵线段AB绕点O顺时针旋转得线段CD,

∴AB=CD,OA=OC,BO=DO

∴△AOB≌△COD(SSS)

∴∠B=∠D

∵∠B=∠D,∠OED=∠BEF

∴∠BFE=∠EOD=60°

故答案为:60°(3)直线与直线所夹的锐角与旋转角互补,延长,交于点∵线段绕点顺时针旋转得线段,∴,,∴∴∴∵∴∴∴直线与直线所夹的锐角与旋转角互补;形成结论:旋转图形中,当旋转角小于平角时,对应线段所在直线的夹角与旋转角相等或互补;(4)将绕点顺时针旋转,使得与重合,得到,连接,延长,交于点,∴旋转角为,∴,,,∴△BDF是等边三角形,∵,,∴,∴.【点睛】本题是三角形综合题,考查了旋转的性质,全等三角形的判定和性质,等边三角形的判定和性质等知识,添加辅助线构造全等三角形是本题的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论