




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江苏省无锡市各地2024年数学八年级下册期末质量检测模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.如图,数轴上的点A所表示的数为x,则x2的值为()A.2 B.-−10 C. D.-22.若分式的值为5,则x、y扩大2倍后,这个分式的值为()A. B.5 C.10 D.253.已知,则式子的值是()A.48 B. C.16 D.124.已知关于x的一元二次方程x2﹣2kx+6=0有两个相等的实数根,则k的值为()A.±2 B.± C.2或3 D.或5.下列命题中,是假命题的是()A.在△ABC中,若∠A:∠B:∠C=1:2:3,则△ABC是直角三角形B.在△ABC中,若a2=(b+c)(b-c),则△ABC是直角三角形C.在△ABC中,若∠B=∠C=∠A,则△ABC是直角三角形D.在△ABC中,若a:b:c=5:4:3,则△ABC是直角三角形6.菱形的两条对角线长为6和8,则菱形的边长和面积分别为()A.10,24 B.5,24 C.5,48 D.10,487.如图,这组数据的组数与组距分别为()A.5,9 B.6,9C.5,10 D.6,108.在平行四边形中,对角线、相交于点,若,则=()A. B. C. D.9.下列二次根式中,与是同类二次根式的是()A. B. C. D.10.分式:①;②;③;④中,最简分式的个数有()A.1个 B.2个 C.3个 D.4个11.如图,ABCD中,点在边上,以为折痕,将向上翻折,点正好落在边上的点处,若的周长为8,的周长为18,则的长为()A.5 B.8 C.7 D.612.如图是我国古代著名的“赵爽弦图”的示意图,此图是由四个全等的直角三角形拼接而成,其中AE=5,BE=12,则EF的长是()A.7 B.8 C.7 D.7二、填空题(每题4分,共24分)13.把二次函数y=-2x2-4x-1的图象向上平移3个单位长度,再向右平移4个单位长度,则两次平移后的图象的解析式是_____________;14.如图,直线a、b垂直相交于点O,曲线C关于点O成中心对称,点A的对称点是点A',AB⊥a于点B,A'D⊥b于点D.若OB=3,OD=2,则阴影部分的面积之和为______.15.化简:.16.关于x的方程有增根,则m的值为_____17.如图,将矩形纸片ABCD沿直线AF翻折,使点B恰好落在CD边的中点E处,点F在BC边上,若CD=6,则AD=__________.18.已知一元二次方程的两个解恰好分别是等腰的底边长和腰长,则的周长为__________.三、解答题(共78分)19.(8分)化简求值:,其中x=.20.(8分)如图1,在直角坐标系中放入一个边长AB长为3,BC长为5的矩形纸片ABCD,使得BC、AB所在直线分别与x、y轴重合.将纸片沿着折痕AE翻折后,点D恰好落在x轴上,记为F.(1)求折痕AE所在直线与x轴交点的坐标;(2)如图2,过D作DG⊥AF,求DG的长度;(3)将矩形ABCD水平向右移动n个单位,则点B坐标为(n,1),其中n>1.如图3所示,连接OA,若△OAF是等腰三角形,试求点B的坐标.21.(8分)甲、乙两人同时从P地出发步行分别沿两个不同方向散步,甲以的速度沿正北方向前行;乙以的速度沿正东方向前行,(1)过小时后他俩的距离是多少?(2)经过多少时间,他俩的距离是?22.(10分)如图,在▱ABCD中,对角线AC,BD相交于点O,过点O的一条直线分别交AD,BC于点E,F.求证:AE=CF.23.(10分)计算:;.海伦公式是利用三角形三条边长求三角形面积的公式,用符号表示为:其中a,b,c为三角形的三边长,,S为三角形的面积利用海伦公式求,,时的三角形面积S.24.(10分)如图所示,已知平行四边形ABCD,对角线AC,BD相交于点O,∠OBC=∠OCB.(1)求证:平行四边形ABCD是矩形;(2)请添加一个条件使矩形ABCD为正方形.25.(12分)小明在数学活动课上,将边长为和3的两个正方形放置在直线l上,如图a,他连接AD、CF,经测量发现AD=CF.(1)他将正方形ODEF绕O点逆时针针旋转一定的角度,如图b,试判断AD与CF还相等吗?说明理由.(2)他将正方形ODEF绕O点逆时针旋转,使点E旋转至直线l上,如图c,请求出CF的长.26.在学校组织的知识竞赛中,八(1)班比赛成绩分为A,B,C,D四个等级,其中相应等级的得分依次记为100分,90分,80分,70分,学校将八(1)班成绩整理并绘制成如下的统计图.请你根据以上提供的信息解答下列问题:(1)请根据统计图的信息求出成绩为C等级的人数;(2)将表格补充完整.
参考答案一、选择题(每题4分,共48分)1、A【解析】
直接利用数轴结合勾股定理得出x的值,进而得出答案.【详解】解:由题意可得:点A所表示的数为x为:-,则x1的值为:1.故选:A.【点睛】此题主要考查了实数与数轴,正确得出x的值是解题关键.2、B【解析】
用、分别代替原式中的、,再根据分式的基本性质进行化简,观察分式的变化即可.【详解】根据题意,得新的分式为.故选:.【点睛】此题考查了分式的基本性质.3、D【解析】
先通分算加法,再算乘法,最后代入求出即可.【详解】解:===(x+y)(x-y),当时,原式=4×=12,故选:D.【点睛】本题考查分式的混合运算和求值,能正确根据分式的运算法则进行化简是解此题的关键.4、B【解析】
利用判别式的意义得到△=(﹣2k)2﹣4×6=0,然后解关于k的方程即可.【详解】解:根据题意得△=(﹣2k)2﹣4×6=0,解得k=±.故选:B.【点睛】本题考查根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.5、C【解析】
一个三角形中有一个直角,或三边满足勾股定理的逆定理则为直角三角形,否则则不是,据此依次分析各项即可.【详解】A.△ABC中,若∠B=∠C-∠A,则∠C=∠A+∠B,则△ABC是直角三角形,本选项正确;B.△ABC中,若a2=(b+c)(b-c),则a2=b2-c2,b2=a2+c2,则△ABC是直角三角形,本选项正确;C.△ABC中,若∠A∶∠B∶∠C=3∶4∶5,则∠,故本选项错误;D.△ABC中,若a∶b∶c=5∶4∶3,则△ABC是直角三角形,本选项正确;故选C.【点睛】本题考查的是直角三角形的判定,利用勾股定理的逆定理判断一个三角形是否是直角三角形的一般步骤:①确定三角形的最长边;②分别计算出最长边的平方与另两边的平方和;③比较最长边的平方与另两边的平方和是否相等.若相等,则此三角形是直角三角形;否则,就不是直角三角形.6、B【解析】分析:根据菱形的性质可求得其边长,根据面积公式即可得到其周面积.详解:根据菱形对角线的性质,可知OA=4,OB=3,由勾股定理可知AB=5,根据菱形的面积公式可知,它的面积=6×8÷2=1.故选B.点睛:本题主要考查了菱形的面积的计算方法:面积=两条对角线的积的一半.7、D【解析】
通过观察频率分布直方图,发现一共分为6组,每一组的最大值和最小值的差都是10,做出判断.【详解】解:频率分布直方图中共有6个直条,故组数是6,每组的最大值和最小值的差都是10,因此组距是10,故选:D.【点睛】考查频率分布直方图的制作方法,明确组距、组数的意义是绘制频率分布直方图的两个基本的步骤.8、D【解析】
根据平行四边形的性质即可得到结论.【详解】解:∵四边形ABCD是平行四边形,
∴S△AOB=S四边形ABCD=×24=6,
故选:D.【点睛】本题考查了平行四边形的性质,熟练掌握平行四边形的性质是解题的关键.9、C【解析】
根据二次根式的性质把各个二次根式化简,根据同类二次根式的定义判断即可.【详解】A.|a|与不是同类二次根式;B.与不是同类二次根式;C.2与是同类二次根式;D.与不是同类二次根式.故选C.【点睛】本题考查了同类二次根式的定义,一般地,把几个二次根式化为最简二次根式后,如果它们的被开方数相同,就把这几个二次根式叫做同类二次根式.10、B【解析】
最简分式的标准是分子,分母中不含有公因式,不能再约分.判断的方法是把分子、分母分解因式,并且观察有无互为相反数的因式,这样的因式可以通过符号变化化为相同的因式从而进行约分.【详解】解:①④中分子分母没有公因式,是最简分式;②中有公因式(a﹣b);③中有公约数4;故①和④是最简分式.故选:B【点睛】最简分式就是分式的分子和分母没有公因式,也可理解为分式的分子和分母的最大公因式为1.所以判断一个分式是否为最简分式,关键是要看分式的分子和分母的最大公因式是否为1.11、A【解析】
根据折叠的性质求出EF=EB,FC=BC,再根据平行四边形的性质得出AB=DC,AD=BC,对周长公式进行等量代换即可得出答案.【详解】根据折叠的性质可知,EF=EB,FC=BC∵ABCD为平行四边形∴AB=DC,AD=BC又△AEF的周长=AF+AE+EF=AF+AE+BE=AF+AB=8△CDF的周长=DC+DF+FC=DC+DF+BC=18∴AB+DF+BC=18,BC-DF+AB=8∴AB+DF+BC-BC+DF-AB=18-8解得DF=5故答案选择A.【点睛】本题考查的是平行四边形的性质以及折叠问题,难度适中,注意折叠前后的两个图形完全重合.12、C【解析】
12和5为两条直角边长时,求出小正方形的边长7,即可利用勾股定理得出EF的值.【详解】∵AE=5,BE=12,即12和5为两条直角边长时,小正方形的边长=12-5=7,∴EF=;故选C.【点睛】本题考查了勾股定理、正方形的性质;熟练掌握勾股定理是解决问题的关键.二、填空题(每题4分,共24分)13、y=-2x2+12x-2【解析】
先把抛物线化为顶点式,再按照“左加右减,上加下减”的规律,即可求出平移后的函数表达式.【详解】解:把抛物线的表达式化为顶点坐标式,y=-2(x+1)2+1.
按照“左加右减,上加下减”的规律,向上平移3个单位,再向右平移4个单位,得y=-2(x+1-4)2+1+3=-2(x-3)2+4=-2x2+12x-2.
故答案为:y=-2x2+12x-2.【点睛】本题考查二次函数图象与几何变换,要求熟练掌握平移的规律:左加右减,上加下减.同时考查了学生将一般式转化顶点式的能力.14、1.【解析】试题分析:∵直线a、b垂直相交于点O,曲线C关于点O成中心对称,点A的对称点是点A',AB⊥a于点B,A'D⊥b于点D,OB=3,OD=2,∴AB=2,∴阴影部分的面积之和为3×2=1.故答案为1.考点:中心对称.15、2【解析】试题分析:相反数的定义是:如果两个数只有符号不同,我们称其中一个数为另一个数的相反数,特别地,1的相反数还是1.因此.16、-1【解析】
增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.把增根代入化为整式方程的方程即可求出m的值.【详解】方程两边都乘(x−3),得2−x−m=2(x−3)∵原方程增根为x=3,∴把x=3代入整式方程,得2−3−m=0,解得m=−1.故答案为:−1.【点睛】此题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.17、3【解析】
由矩形的性质可得AB=CD=6,再由折叠的性质可得AE=AB=6,在Rt△ADE中,根据勾股定理求得AD的长即可.【详解】∵纸片ABCD为矩形,∴AB=CD=6,∵矩形纸片ABCD折叠,使点B恰好落在CD边的中点E处,折痕为AF,∴AE=AB=6,∵E为DC的中点,∴DE=3,在Rt△ADE中,AE=6,DE=3,由勾股定理可得,AD=故答案为:.【点睛】本题考查了矩形的性质、折叠的性质及勾股定理,正确求得AE=6、DE=3是解决问题的关键.18、2【解析】
用因式分解法可以求出方程的两个根分别是3和1,根据等腰三角形的三边关系,腰应该是1,底是3,然后可以求出三角形的周长.【详解】x2-9x+18=0
(x-3)(x-1)=0
解得x1=3,x2=1.
由三角形的三边关系可得:腰长是1,底边是3,
所故周长是:1+1+3=2.
故答案为:2.【点睛】此题考查解一元二次方程-因式分解,解题关键在于用十字相乘法因式分解求出方程的两个根,然后根据三角形的三边关系求出三角形的周长.三、解答题(共78分)19、【解析】
首先按照乘法分配律将原式变形,然后根据分式的基本性质进行约分,再去括号,合并同类项即可进行化简,然后将x的值代入化简后的式子中即可求解.【详解】原式=当时,原式.【点睛】本题主要考查分式的化简求值,掌握分式的基本性质是解题的关键.20、(2)折痕AE所在直线与x轴交点的坐标为(9,2);(2)3;(3)点B(4,2)或B(2,2).【解析】
(2)根据四边形ABCD是矩形以及由折叠对称性得出AF=AD=5,EF=DE,进而求出BF的长,即可得出E点的坐标,进而得出AE所在直线与x轴交点的坐标;(2)判断出△DAG≌△AFB,即可得出结论;(3)分三种情况讨论:若AO=AF,OF=FA,AO=OF,利用勾股定理求出即可.【详解】解:(2)∵四边形ABCD是矩形,∴AD=CB=5,AB=DC=3,∠D=∠DCB=∠ABC=92°,由折叠对称性:AF=AD=5,EF=DE,在Rt△ABF中,BF==4,∴CF=2,设EC=x,则EF=3﹣x,在Rt△ECF中,22+x2=(3﹣x)2,解得:x=,∴E点坐标为:(5,),∴设AE所在直线解析式为:y=ax+b,则,解得:,∴AE所在直线解析式为:y=x+3,当y=2时,x=9,故折痕AE所在直线与x轴交点的坐标为:(9,2);(2)在△DAG和△AFB中∵,∴△DAG≌△AFB,∴DG=AB=3;(3)分三种情况讨论:若AO=AF,∵AB⊥OF,∴BO=BF=4,∴n=4,∴B(4,2),若OF=FA,则n+4=5,解得:n=2,∴B(2,2),若AO=OF,在Rt△AOB中,AO2=OB2+AB2=m2+9,∴(n+4)2=n2+9,解得:n=(n<2不合题意舍去),综上所述,若△OAF是等腰三角形,n的值为n=4或2.即点B(4,2)或B(2,2).【点睛】此题是四边形综合题,主要考查了待定系数法,折叠的性质,全等三角形的判定和性质,勾股定理,等腰三角形的性质,利用勾股定理求出CE是解本题的关键.21、(1)5t;(2)3小时【解析】
(1)根据两人行驶的路线围成一个直角三角形,利用勾股定理求解即可;(2)利用(1)中所求,结合两人距离为15km,即可求出时间.【详解】(1)∵甲以3km/h的速度沿正北方向前行;乙以4km/h的速度沿正东方向前行,∴两人行驶的路线围成一个直角三角形,∴过t个小时后他俩的距离是:,答:过t个小时后他俩的距离是5tkm;(2)由题意可得:5t=15,解得:t=3,答:经过3小时,他俩的距离是15km.【点睛】本题考查了勾股定理的实际应用,解题的关键是从实际问题中整理出直角三角形模型,利用勾股定理解决问题.22、证明见解析.【解析】
利用平行四边形的性质得出AO=CO,AD∥BC,进而得出∠EAC=∠FCO,再利用ASA求出△AOE≌△COF,即可得出答案.【详解】∵▱ABCD的对角线AC,BD交于点O,∴AO=CO,AD∥BC,∴∠EAC=∠FCO,在△AOE和△COF中,∴△AOE≌△COF(ASA),∴AE=CF.【点睛】本题考查了全等三角形的判定与性质以及平行四边形的性质,熟练掌握全等三角形的判定方法是解题关键.23、(1)①5;②5;(2),3.【解析】
(1)根据二次根式的运算法则进行计算,适当运用乘法公式;(2)把已知值代入公式,再进行化简.【详解】解:,,【点睛】本题考核知识点:二次根式运算.解题关键点:掌握二次根式运算法则.24、(1)证明见解析;(2)AB=AD(或AC⊥BD答案不唯一).【解析】试题分析:(1)根据平行四边形对角线互相平分可得OA=OC,OB=OD,根据等角对等边可得OB=OC,然后求出AC=BD,再根据对角线相等的平行四边形是矩形证明;(2)根据正方形的判定方法添加即可.试题解析:解:(1)∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵∠OBC=∠OCB,∴OB=OC,∴AC=BD,∴平行四边形ABCD是矩形;(2)AB=AD(或AC⊥BD答案不唯一).理由:∵四边形ABCD是矩形,又∵AB=AD,∴四边形ABCD
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 入职团队培训
- 护理学组计划
- 客服情绪管理自我调节培训
- 审计外包合同
- 教科版(2017)科学五年下册《给船装上动力》说课(附反思、板书)课件
- 技术服务与装修合同
- 拍卖后续交易协议
- 家电销售协议示例
- 小星星乐谱课件
- 专科大学生创业规划书
- 个人外汇管理办法实施问答(一二三四期)
- 【财务报表分析论文:美的集团财务报表分析6400字】
- 百位数加减法练习题连加
- 妇产科学妊娠合并糖尿病课件
- 2024年北京牌照租赁协议参考样本(四篇)
- GB/T 4706.61-2024家用和类似用途电器的安全第61部分:使用液体或蒸汽的家用表面清洁器具的特殊要求
- 2024年不动产登记代理人《地籍调查》考试题库大全(含真题、典型题)
- 医院检验科实验室生物安全程序文件SOP
- 中考语文复习常考名著精练4.《革命烈士诗抄》-有答案
- 山东浪潮数字企业技术有限公司社会招聘笔试真题2023
- 2024年芜湖市公安局辅警招聘笔试参考题库附带答案详解
评论
0/150
提交评论