版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江苏省盐城市东台市第一教育集团2024年数学八年级下册期末达标检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.如图中的数字都是按一定规律排列的,其中x的值是()A.179 B.181 C.199 D.2102.下列式子中y是x的正比例函数的是()A.y=3x-5 B.y= C.y= D.y=23.一次函数y=ax+1与y=bx-2的图象交于x轴上同一个点,那么a∶b的值为()A.1∶2B.-1∶2C.3∶2D.以上都不对4.若点Α在一次函数y=3x+b的图象上,且3m-n>2,则b的取值范围为()A.b>2 B.b>-2 C.b<2 D.b<-25.如图,直线y=-x+m与y=nx+4n(n≠0)的交点的横坐标为-1.则下列结论:①m<0,n>0;②直线y=nx+4n一定经过点(-4,0);③m与n满足m=1n-1;④当x>-1时,nx+4n>-x+m,其中正确结论的个数是()A.1个 B.1个 C.3个 D.4个6.若x2+mxy+y2是一个完全平方式,则m=()A.2B.1C.±1D.±27.如图所示,矩形ABCD中,点E在DC上且DE:EC=2:3,连接BE交对角线AC于点O.延长AD交BE的延长线于点F,则△AOF与△BOC的面积之比为()A.9:4 B.3:2 C.25:9 D.16:98.-个多边形的内角和等于它的外角和的两倍,则这个多边形的边数为()A.6 B.7 C.8 D.99.已知反比例函数,当时,自变量x的取值范围是A. B. C. D.或10.关于的一元二次方程有两个不相等的实数根,则实数的取值范围是()A. B. C. D.二、填空题(每小题3分,共24分)11.若直线y=kx+b与直线y=2x平行,且与y轴相交于点(0,–3),则直线的函数表达式是__________.12.如图,直线y=x﹣4与x轴交于点A,以OA为斜边在x轴上方作等腰Rt△OAB,并将Rt△AOB沿x轴向右平移,当点B落在直线y=x﹣4上时,Rt△OAB扫过的面积是__.13.若分式的值是0,则x的值为________.14.某班有40名同学去看演出,购买甲、乙两种票共用去370元,其中甲种票每张10元,乙种票每张8元,设购买了甲种票张,乙种票张,由此可列出方程组为______.15.一组数据1,3,5,7,9的方差为________.16.矩形(非正方形)四个内角的平分线围成的四边形是__________形.(埴特殊四边形)17.若,则关于函数的结论:①y随x的增大而增大;②y随x的增大而减小;③y恒为正值;④y恒为负值.正确的是________.(直接写出正确结论的序号)18.如图,直线y=x+b与直线y=kx+6交于点P(3,5),则关于x的不等式kx+6>x+b的解集是_____.三、解答题(共66分)19.(10分)先化简,再求值:,其中20.(6分)计算:+(π﹣3)0﹣()﹣1+|1﹣|21.(6分)如图,在4×3的正方形网格中,每个小正方形的边长都是1.(1)分别求出线段AB,CD的长度;(2)在图中画出线段EF,使得EF的长为,用AB、CD、EF三条线段能否构成直角三角形,请说明理由.22.(8分)对于平面直角坐标系xOy中的点P和正方形给出如下定义:若正方形的对角线交于点O,四条边分别和坐标轴平行,我们称该正方形为原点正方形,当原点正方形上存在点Q,满足PQ≤1时,称点P为原点正方形的友好点.(1)当原点正方形边长为4时,①在点P1(0,0),P2(-1,1),P3(3,2)中,原点正方形的友好点是__________;②点P在直线y=x的图象上,若点P为原点正方形的友好点,求点P横坐标的取值范围;(2)乙次函数y=-x+2的图象分别与x轴,y轴交于点A,B,若线段AB上存在原点正方形的友好点,直接写出原点正方形边长a的取值范围.23.(8分)(1)计算:;(2)解方程:.24.(8分)如图1,在正方形和正方形中,边在边上,正方形绕点按逆时针方向旋转(1)如图2,当时,求证:;(2)在旋转的过程中,设的延长线交直线于点.①如果存在某一时刻使得,请求出此时的长;②若正方形绕点按逆时针方向旋转了,求旋转过程中,点运动的路径长.25.(10分)四川苍溪小王家今年红心猕猴桃喜获丰收,采摘上市20天全部销售完,小王对销售情况进行跟踪记录,并将记录情况绘制成图象,日销售量y(单位:千克)与上市时间x(单位:天)的函数关系如图(1)所示,红星猕猴桃的价格z(单位:元/千克)与上市时间x(天)的函数关系式如图(2)所示.(1)观察图象,直接写出日销售量的最大值;(2)求小王家红心猕猴桃的日销量y与上市时间x的函数解析式;并写出自变量的取值范围.(3)试比较第6天和第13天的销售金额哪天多?26.(10分)已知关于的一元二次方程.(1)求证:无论取何实数,该方程总有两个不相等的实数根;(2)若方程的一根为3,求另一个根.
参考答案一、选择题(每小题3分,共30分)1、B【解析】
根据已知图形得出m+1=n且m+n=19,求得m、n的值,再根据x=19n﹣m可得答案.【详解】.解:由题意知,m+1=n且m+n=19,则m=9、n=10,∴x=19×10﹣9=181,故选:B.【点睛】本题主要考查图形及数的变化规律,解题的关键是通过观察图形分析总结出规律,再按规律求解.2、C【解析】
根据正比例函数的定义:形如y=kx(k是常数,k≠0)的函数叫做正比例函数,其中k叫做比例系数进行分析即可.【详解】解:A、y=3x-5,是一次函数,不是正比例函数,故此选项错误;B、y=,是反比例函数,不是正比例函数,故此选项错误;C、y=x是正比例函数,故此选项正确;D、y=2不是正比例函数,故此选项错误;故选:C.【点睛】此题主要考查了正比例函数定义,关键是掌握正比例函数的一般形式.3、B【解析】试题分析:先根据x轴上的点的横坐标相等表示出x的值,再根据相交于同一个点,则x值相等,列式整理即可得解.解:∵两个函数图象相交于x轴上同一个点,∴y=ax+1=bx﹣1=0,解得x=﹣=,所以=﹣,即a:b=(﹣1):1.故选B.4、D【解析】分析:由点(m,n)在一次函数的图像上,可得出3m+b=n,再由3m-n>1,即可得出b<-1,此题得解.详解:∵点A(m,n)在一次函数y=3x+b的图象上,
∴3m+b=n.
∵3m-n>1,
∴3m-(3m+b)>1,即-b>1,∴b<-1.
故选D.点睛:考查了一次函数图象上点的坐标特征:点的坐标满足函数的解析式,根据一次函数图象上点的坐标特征,再结合3m-n>1,得出-b>1是解题的关键.5、D【解析】
①由直线y=-x+m与y轴交于负半轴,可得m<0;y=nx+4n(n≠0)的图象从左往右逐渐上升,可得n>0,即可判断结论①正确;②将x=-4代入y=nx+4n,求出y=0,即可判断结论②正确;③由整理即可判断结论③正确;④观察函数图象,可知当x>-1时,直线y=nx+4n在直线y=-x+m的上方,即nx+4n>-x+m,即可判断结论④正确.【详解】解:①∵直线y=-x+m与y轴交于负半轴,∴m<0;∵y=nx+4n(n≠0)的图象从左往右逐渐上升,∴n>0,故结论①正确;②将x=-4代入y=nx+4n,得y=-4n+4n=0,∴直线y=nx+4n一定经过点(-4,0).故结论②正确;③∵直线y=-x+m与y=nx+4n(n≠0)的交点的横坐标为-1,∴当x=-1时,y=1+m=-1n+4n,∴m=1n-1.故结论③正确;④∵当x>-1时,直线y=nx+4n在直线y=-x+m的上方,∴当x>-1时,nx+4n>-x+m,故结论④正确.故选:D.【点睛】本题考查了一次函数图象上点的坐标特征、一次函数与一元一次不等式以及一次函数的图象,逐一分析四条结论的正误是解题的关键.6、D【解析】根据完全平方公式:(a+b)2=a2+2ab+b2与(a-b)2=a2-2ab+b2可知,要使x2+mxy+y2符合完全平方公式的形式,该式应为:x2+2xy+y2=(x+y)2或x2-2xy+y2=(x-y)2.对照各项系数可知,系数m的值应为2或-2.故本题应选D.点睛:本题考查完全平方公式的形式,应注意完全平方公式有(a+b)2、(a-b)2两种形式.考虑本题时要全面,不要漏掉任何一种形式.7、C【解析】
由矩形的性质可知:AB=CD,AB∥CD,进而可证明△AOB∽△COE,结合已知条件可得AO:OC=3:5,再根据相似三角形的性质:面积之比等于相似比的平方即可求出△AOF与△BOC的面积之比.【详解】解:∵四边形ABCD是矩形,∴AB=CD,AB∥CD,∴△AOB∽△COE,∵DE:EC=2:3,∴CE:CD=3:5,∴CE:CD=CE:AB=CO:AO=3:5,∴S△AOF:S△BOC=25:1.故选C.【点睛】本题考查了矩形的性质、相似三角形的判定和性质,熟记两个三角形相似面积之比等于相似比的平方是解题的关键.8、A【解析】
根据题意得(n-2)•180=720,解得:n=6,故选A.9、D【解析】
根据函数解析式中的系数推知函数图象经过第一、三象限,结合函数图象求得当时自变量的取值范围.【详解】解:反比例函数的大致图象如图所示,当时自变量的取值范围是或.故选:.【点睛】考查了反比例函数的性质,解题时,要注意自变量的取值范围有两部分组成.10、B【解析】
由方程有两个不相等的实数根结合根的判别式,可得出△=36-1k>0,解之即可得出实数k的取值范围.【详解】∵方程x2-1x+k=0有两个不相等的实数根,
∴△=(-1)2-1k=16-1k>0,
解得:k<1.
故选:B.【点睛】此题考查根的判别式,牢记“当△>0时,方程有两个不相等的实数根”是解题的关键.二、填空题(每小题3分,共24分)11、y=2x–1【解析】
根据两条直线平行问题得到k=2,然后把点(0,-1)代入y=2x+b可求出b的值,从而可确定所求直线解析式.【详解】∵直线y=kx+b与直线y=2x平行,∴k=2,把点(0,–1)代入y=2x+b得b=–1,∴所求直线解析式为y=2x–1.故答案为y=2x–1.【点睛】本题考查了待定系数法求函数解析式以及两条直线相交或平行问题,解题时注意:若直线y=k1x+b1与直线y=k2x+b2平行,则k1=k2.12、1.【解析】
根据等腰直角三角形的性质求得点BC、OC的长度,即点B的纵坐标,表示出B′的坐标,代入函数解析式,即可求出平移的距离,进而根据平行四边形的面积公式即可求得.【详解】解:y=x-4,
当y=0时,x-4=0,
解得:x=4,
即OA=4,
过B作BC⊥OA于C,
∵△OAB是以OA为斜边的等腰直角三角形,
∴BC=OC=AC=2,
即B点的坐标是(2,2),
设平移的距离为a,
则B点的对称点B′的坐标为(a+2,2),
代入y=x-4得:2=(a+2)-4,
解得:a=4,
即△OAB平移的距离是4,
∴Rt△OAB扫过的面积为:4×2=1,
故答案为:1.【点睛】本题考查了一次函数图象上点的坐标特征、等腰直角三角形和平移的性质等知识点,能求出B′的坐标是解此题的关键.13、3【解析】
根据分式为0的条件解答即可,【详解】因为分式的值为0,所以∣x∣-3=0且3+x≠0,∣x∣-3=0,即x=3,3+x≠0,即x≠-3,所以x=3,故答案为:3【点睛】本题考查分式值为0的条件:分式的分子为0,且分母不为0,熟练掌握分式值为0的条件是解题关键.14、【解析】
本题有两个相等关系:购买甲种票的人数+购买乙种票的人数=40;购买甲种票的钱数+购买乙种票的钱数=370,再根据上述的等量关系列出方程组即可.【详解】解:由购买甲种票的人数+购买乙种票的人数=40,可得方程;由购买甲种票的钱数+购买乙种票的钱数=370,可得,故答案为.【点睛】本题考查了二元一次方程组的应用,认真审题、找准蕴含在题目中的等量关系是解决问题的关键,一般来说,设两个未知数,需要寻找两个等量关系.15、8【解析】
根据方差公式S2=计算即可得出答案.【详解】解:∵数据为1,3,5,7,9,∴平均数为:=5,∴方差为:[(1-5)2+(3-5)2+(5-5)2+(7-5)2+(9-5)2]=8.故答案为8.【点睛】本题考查方差的计算,熟记方差公式是解题关键.16、正方【解析】
此类题根据矩形性质,三角形内角和定理及角平分线定义得到所求的四边形的各个角为90°,进而求解.【详解】∵AF,BE是矩形的内角平分线.
∴∠ABF=∠BAF-90°.
故∠1=∠2=90°.
同理可证四边形GMON四个内角都是90°,则四边形GMON为矩形.
又∵有矩形ABCD且AF、BE、DK、CJ为矩形ABCD四角的平分线,
∴有等腰直角△DOC,等腰直角△AMD,等腰直角△BNC,AD=BC.
∴OD=OC,△AMD≌△BNC,
∴NC=DM,
∴NC-OC=DM-OD,
即OM=ON,
∴矩形GMON为正方形,
故答案为正方.【点睛】本题考查的是矩形性质,角平分线定义,联系三角形内角和的知识可求解.17、①③【解析】
根据题意和正比例函数的性质可以判各个小题中的结论是否正确,本题得以解决.【详解】解:,函数,y随x的增大而增大,故①正确,②错误;当时,,故③正确,④错误.故答案为:①③.【点睛】本题考查正比例函数的性质,解答本题的关键是明确题意,利用正比例函数的性质解答.18、x<1【解析】
观察函数图象得到当x<1时,函数y=kx+6的图象都在y=x+b的图象上方,所以关于x的不等式kx+6>x+b的解集为x<1.【详解】由图象可知,当x<1时,有kx+6>x+b,当x>1时,有kx+6<x+b,所以,填x<1【点睛】本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.三、解答题(共66分)19、-2【解析】试题分析:先化简,再将x的值代入计算即可.试题解析:原式==+1=当x=时,原式==-220、【解析】
按顺序分别进行二次根式的化简、0次幂的计算、负指数幂的计算、绝对值的化简,然后再按运算顺序进行计算即可得.【详解】+(π﹣3)0﹣()﹣1+|1﹣|==.【点睛】本题考查了实数的混合运算,涉及了二次根式的化简、0次幂的计算、负指数幂的计算、绝对值的化简等,熟练掌握各运算的运算法则是解题的关键.21、(1)AB=,CD=;(2)能否构成直角三角形,理由见解析.【解析】
(1)利用勾股定理求出AB、CD的长即可;
(2)根据勾股定理的逆定理,即可作出判断.【详解】(1)(2)如图,∵∴∴以AB、CD、EF三条线可以组成直角三角形.【点睛】考查勾股定理,勾股定理的逆定理,比较基础,熟练掌握勾股定理以及勾股定理的逆定理是解题的关键.22、(1)①P2,P3,②1≤x≤或≤x≤-1;(2)2-≤a≤1.【解析】
(1)由已知结合图象,找到点P所在的区域;
(2)分别求出点A与B的坐标,由线段AB的位置,通过做圆确定正方形的位置.【详解】解:(1)①∵原点正方形边长为4,
当P1(0,0)时,正方形上与P1的最小距离是2,故不存在Q使P1Q≤1;
当P2(-1,1)时,存在Q(-2,1),使P2Q≤1;
当P3(3,2)时,存在Q(2,2),使P3Q≤1;
故答案为P₂、P₃;
②如图所示:阴影部分就是原点正方形友好点P的范围,
由计算可得,点P横坐标的取值范围是:
1≤x≤2+或-2-≤x≤-1;(2)一次函数y=-x+2的图象分别与x轴,y轴交于点A,B,
∴A(0,2),B(2,0),
∵线段AB上存在原点正方形的友好点,
如图所示:
原点正方形边长a的取值范围2-≤a≤1.【点睛】本题考查一次函数的性质,新定义;能够将新定义的内容转化为线段,圆,正方形之间的关系,并能准确画出图形是解题的关键.23、(1)-2;(2)无解【解析】
(1)原式利用零指数幂、负整数指数幂法则,平方根及立方根定义计算即可求出值;
(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【详解】解:(1)原式;(2)方程两边同时乘以,得:,解得:,检验:把代入得:,则是增根,原分式方程无解.【点睛】此题考查了解分式方程,以及实数的运算,熟练掌握运算法则是解本题的关键.24、(1)见详解;(2);.【解析】
(1)由正方形的性质得出AD=AB,AG=AE,∠BAD=∠EAG=90°,由∠BAE+∠EAD=∠BAD,∠DAG+∠EAD=∠EAG,推出∠BAE=∠DAG,由SAS即可证得△DAG≌△BAE;(2)①由AB=2,AE=1,由勾股定理得AF=AE=,易证△ABF是等腰三角形,由AE=EF,则直线BE是AF的垂直平分线,设BE的延长线交AF于点O,交AD于点H,则OE=OA=,由勾股定理得OB=,由cos∠ABO=,cos∠ABH=,求得BH=,由勾股定理得AH==,则DH=AD−AH=2−,由∠DHP=∠BHA,∠BAH=∠DPH=90°,证得△BAH∽△DPH,得出,即可求得DP;②由△DAG≌△BAE,得出∠ABE=∠ADG,由∠BPD=∠BAD=90°,则点P的运动轨迹为以BD为直径的,由正方形的性质得出BD=AB=2,由正方形AEFG绕点A按逆时针方向旋转了60°,得出∠BAE=60°,由AB=2AE,得出∠BEA=90°,∠ABE=30°,B、E、F三点共线,同理D、F、G三点共线,则P与F重合,得出∠ABP=30°,则所对的圆心角为60°,由弧长公式即可得出结果.【详解】解答:(1)证明:在正方形ABCD和正方形AEFG中,AD=AB,AG=AE,∠BAD=∠EAG=90°,∵∠BAE+∠EAD=∠BAD,∠DAG+∠EAD=∠EAG,∴∠BAE=∠DAG,在△DAG和△BAE中,,∴△DAG≌△BAE(SAS);∴BE=DG;(2)解:①∵AB=2AE=2,∴AE=1,由勾股定理得,AF=AE=,∵BF=BC=2,∴AB=BF=2,∴△ABF是等腰三角形,∵AE=EF,∴直线BE是AF的垂直平分线,设BE的延长线交AF于点O,交AD于点H,如图3所示:则OE=OA=,∴OB=,∵cos∠ABO=,cos∠ABH=,∴BH=,AH==,∴DH=AD−AH=2−,∵∠DHP=∠BHA,∠BAH=∠DPH=90°,∴△BAH∽△DPH,∴,即∴DP=;②∵△DAG≌△BAE,∴∠ABE=∠ADG,∵∠BPD=∠BAD=90°,∴点P的运动轨迹为以BD为直径的,BD=AB=2,∵正方形AEFG绕点A按逆时针方向旋转了60°,∴∠BAE=60°,∵AB=2AE,∴∠BEA=90°,∠ABE=30°,∴B、E、F三点共线,同理D、F、G三点共线,∴P与F重合,∴∠ABP=30°,∴所对的圆心角为60°,∴旋转过程中点P运动的路线长为:.【点睛】本题是四边形综合题,主要考查了正方形的性质、旋转的性质、等腰三角形的性质、等腰直角三角形的性质、全等三角形的判定与性质、相似三角形的判定与性质、圆周角定理、勾股定理、三角函数等知识,综合性强,难度大,知识面广.25、(1)日销售量最大为120千克;(2);(3)第6天比第13天销售金额大.【解析】
(1)观察图(1),可直接得出第12天时,日销售量最大120千克;(2)观察图(1)可得,日销售量y与上市时间x的函数关系式存在两种形式,根据直线所经过点
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年三季度报天津地区A股资产总计排名前十大上市公司
- 课题申报参考:家庭与政府养老互动视角下养老保险改革的经济影响与政策优化研究
- 2025年两个责任学习心得样本(4篇)
- 基于2025年度标准的智能交通系统设计与施工劳务分包合同
- 2025年个人数据安全保密与风险评估合同3篇
- 二零二五版网络安全评估与整改服务合同2篇
- 基于2025年度市场预测的商品销售框架协议3篇
- 2024系统采购合同
- 2024珠宝玉器买卖合同
- 2025版酒店客房装修与绿色环保材料使用合同3篇
- 不同茶叶的冲泡方法
- 光伏发电并网申办具体流程
- 建筑劳务专业分包合同范本(2025年)
- 企业融资报告特斯拉成功案例分享
- 五年(2020-2024)高考地理真题分类汇编(全国版)专题12区域发展解析版
- 《阻燃材料与技术》课件 第8讲 阻燃木质材料
- 低空经济的社会接受度与伦理问题分析
- 法考客观题历年真题及答案解析卷一(第1套)
- 央国企信创白皮书 -基于信创体系的数字化转型
- 6第六章 社会契约论.电子教案教学课件
- 运动技能学习与控制课件
评论
0/150
提交评论