![2024届山东省菏泽市牡丹区王浩屯中学数学八年级下册期末质量跟踪监视模拟试题含解析_第1页](http://file4.renrendoc.com/view3/M02/07/35/wKhkFmYYIJuAL5E0AAH_pd61EAQ278.jpg)
![2024届山东省菏泽市牡丹区王浩屯中学数学八年级下册期末质量跟踪监视模拟试题含解析_第2页](http://file4.renrendoc.com/view3/M02/07/35/wKhkFmYYIJuAL5E0AAH_pd61EAQ2782.jpg)
![2024届山东省菏泽市牡丹区王浩屯中学数学八年级下册期末质量跟踪监视模拟试题含解析_第3页](http://file4.renrendoc.com/view3/M02/07/35/wKhkFmYYIJuAL5E0AAH_pd61EAQ2783.jpg)
![2024届山东省菏泽市牡丹区王浩屯中学数学八年级下册期末质量跟踪监视模拟试题含解析_第4页](http://file4.renrendoc.com/view3/M02/07/35/wKhkFmYYIJuAL5E0AAH_pd61EAQ2784.jpg)
![2024届山东省菏泽市牡丹区王浩屯中学数学八年级下册期末质量跟踪监视模拟试题含解析_第5页](http://file4.renrendoc.com/view3/M02/07/35/wKhkFmYYIJuAL5E0AAH_pd61EAQ2785.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届山东省菏泽市牡丹区王浩屯中学数学八年级下册期末质量跟踪监视模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.、、为三边,下列条件不能判断它是直角三角形的是()A. B.,,C. D.,,(为正整数)2.已知点A(﹣1,y1),点B(2,y2)在函数y=﹣3x+2的图象上,那么y1与y2的大小关系是()A.y1>y2 B.y1<y2 C.y1=y2 D.不能确定3.若点(3,1)在一次函数y=kx-2(k≠0)的图象上,则k的值是()A.5 B.4 C.3 D.14.一个装有进水管和出水管的空容器,从某时刻开始内只进水不出水,容器内存水,在随后的内既进水又出水,容器内存水,接着关闭进水管直到容器内的水放完.若每分钟进水和出水量是两个常数,容器内的水量(单位:)与时间(单位:)之间的函数关系的图象大致的是()A. B.C. D.5.一次函数y=ax+b的图象如图所示,则不等式ax+b≥0的解集是()A.x≥2 B.x≤2 C.x≥4 D.x≤46.菱形OBCA在平面直角坐标系中的位置如图所示,点C的坐标是8,0,点A的纵坐标是2,则点B的坐标是()A.4,2 B.4,-2 C.2,-6 D.2,67.若A(,)、B(,)是一次函数y=(a-1)x+2图象上的不同的两个点,当>时,<,则a的取值范围是()A.a>0 B.a<0 C.a>1 D.a<18.下列图形中既是轴对称图形又是中心对称图形的是()A.等腰三角形 B.平行四边形 C.正五边形 D.正十边形9.甲、乙、丙、丁四名射击运动员在选拔赛中,每人射击了10次、甲、乙两人的成绩如表所示,丙、丁两人的成绩如图所示.欲选一名运动员参赛,从平均数和方差两个因素分析,应选().
甲
乙
平均数
9
8
方差
1
1
A.甲 B.乙 C.丙 D.丁10.用配方法解方程时,配方后正确的是()A. B. C. D.11.如果关于的分式方程有非负整数解,且一次函数不经过四象限,则所有符合条件的的和是().A.0 B.2 C.3 D.512.Rt△ABC中,AB=AC,点D为BC中点.∠MDN=90°,∠MDN绕点D旋转,DM、DN分别与边AB、AC交于E、F两点.下列结论①(BE+CF)=BC,②,③AD·EF,④AD≥EF,⑤AD与EF可能互相平分,其中正确结论的个数是()A.1个 B.2个 C.3个 D.4个二、填空题(每题4分,共24分)13.如图,在△ABC中,AB=AC,AD⊥BC,垂足为D,E是AC的中点.若DE=5,则AB的长为▲.14.如图,在矩形ABCD中,对角线AC、BD交于点O,∠AOD=120°,对角线AC=4,则BC的长为_____.15.不等式组的解集是_____.16.某学校为了解本校学生课外阅读的情况,从全体学生中随机抽取了部分学生进行调查,并将调查结果绘制成统计表,如下表.已知该校学生人数为1200人,由此可以估计每周课外阅读时间在1~2(不含1)小时的学生有_________人.每周课外阅读时间(小时)0~11~2(不含1)2~3(不含2)超过3人
数710141917.如图,E为△ABC中AB边的中点,EF∥AC交BC于点F,若EF=3cm,则AC=____________.18.▱ABCD中,已知点A(﹣1,0),B(2,0),D(0,1),则点C的坐标为________.三、解答题(共78分)19.(8分)如图,直线y1=2x-2的图像与y轴交于点A,直线y2=-2x+6的图像与y轴交于点B,两者相交于点C.(1)方程组的解是______;(2)当y1>0与y2>0同时成立时,x的取值范围为_____;(3)求△ABC的面积;(4)在直线y1=2x-2的图像上存在异于点C的另一点P,使得△ABC与△ABP的面积相等,请求出点P的坐标.20.(8分)阅读下列一段文字,然后回答下列问题:已知平面内两点P1(x1,y1),P2(x2,y2),其两点间的距离。例如:已知P(3,1),Q(1,-2),则这两点间的距离.特别地,如果两点M(x1,y1),N(x2,y2),所在的直线与坐标轴重合或平行于坐标轴或者垂直于坐标轴,那么这两点间的距离公式可简化为或。(1)已知A(2,3),B(-1,-2),则A,B两点间的距离为_________;(2)已知M,N在平行于y轴的直线上,点M的纵坐标为-2,点N的纵坐标为3,则M,N两点间的距离为_________;(3)在平面直角坐标系中,已知A(0,4),B(4,2),在x轴上找点P,使PA+PB的长度最短,求出点P的坐标及PA+PB的最短长度.21.(8分)如图,一次函数与反比例函数的图象交于点和,与y轴交于点C.(1)=,=;(2)根据函数图象可知,当>时,x的取值范围是;(3)过点A作AD⊥x轴于点D,点P是反比例函数在第一象限的图象上一点.设直线OP与线段AD交于点E,当:=3:1时,求点P的坐标.22.(10分)计算:(1);(2)解方程.23.(10分)如图,在中,点是边上一个动点,过点作直线,设交的平分线于点,交的外角平分线于点.
(1)探究与的数量关系并加以证明;
(2)当点运动到上的什么位置时,四边形是矩形,请说明理由;
(3)在(2)的基础上,满足什么条件时,四边形是正方形?为什么?24.(10分)(1)解不等式组(2)已知A=①化简A②当x满足不等式组且x为整数时,求A的值.(3)化简25.(12分)已知一次函数的图象经过A(-2,-3),B(1,3)两点.(1)求这个一次函数的解析式;(2)试判断点P(-1,1)是否在这个一次函数的图象上;(3)求此函数与x轴、y轴围成的三角形的面积.26.如图,在平行四边形ABCD中,边AB的垂直平分线交AD于点E,交CB的延长线于点F,连接AF,BE.试判断四边形AFBE的形状,并说明理由.
参考答案一、选择题(每题4分,共48分)1、C【解析】
根据三角形内角和定理可得C是否是直角三角形;根据勾股定理逆定理可判断出A、B、D是否是直角三角形.【详解】解:A.即,根据勾股定理逆定理可判断△ABC为直角三角形;B.,,,因为,即,,根据勾股定理逆定理可判断△ABC为直角三角形;C.根据三角形内角和定理可得最大的角,可判断△ABC为锐角三角形;D.,,(为正整数),因为,即,根据勾股定理逆定理可判断△ABC为直角三角形;故选:C【点睛】本题考查勾股定理的逆定理的应用,以及三角形内角和定理.判断三角形是否为直角三角形,可利用勾股定理的逆定理和直角三角形的定义判断.2、A【解析】
因为k=−3<0,所以y随x的增大而减小.因为−1<2,所以y1>y2.【详解】解:∵k=﹣3<0,∴y随x的增大而减小,∵﹣1<2,∴y1>y2,故选A.【点睛】本题主要考查一次函数的性质.掌握k>0时y随x的增大而增大,k<0时y随x的增大而减小是解题关键.3、D【解析】试题分析:∵点(3,1)在一次函数y=kx-2(k≠0)的图象上,∴3k-2=1,解得k=1.故选D.考点:一次函数图象上点的坐标特征.4、A【解析】
根据只进水不出水、既进水又出水、只出水不进水这三个时间段逐一进行分析即可确定答案.【详解】∵从某时刻开始内只进水不出水,容器内存水;∴此时容器内的水量随时间的增加而增加,∵随后的内既进水又出水,容器内存水,∴此时水量继续增加,只是增速放缓,∵接着关闭进水管直到容器内的水放完,∴水量逐渐减少为0,综上,A选项符合,故选A.【点睛】本题考查了函数的图象,弄清题意,正确进行分析是解题的关键.5、B【解析】
解不等式ax+b≥0的解集,就是求一次函数y=ax+b的函数值大于或等于0时,自变量的取值范围.【详解】不等式ax+b≥0的解集为x≤1.
故选B.【点睛】本题考查的知识点是利用图象求解各问题,解题关键是先画函数图象,根据图象观察,得出结论.6、B【解析】
连接AB交OC于点D,由菱形OACB中,根据菱形的性质可得OD=CD=4,BD=AD=2,由此即可求得点B的坐标.【详解】∵连接AB交OC于点D,∵四边形ABCD是菱形,∴AB⊥OC,OD=CD,AD=BD,∵点C的坐标是(8,0),点A的纵坐标是2,∴OC=8,BD=AD=2,∴OD=4,∴点B的坐标为:(4,-2).故选B.【点睛】本题考查了菱形的性质与点与坐标的关系.熟练运用菱形的性质是解决问题的关键,解题时注意数形结合思想的应用.7、D【解析】
根据一次函数的图象y=(a-1)x+2,当a-1<0时,y随着x的增大而减小分析即可.【详解】解:因为A(x1,y1)、B(x2,y2)是一次函数y=(a-1)x+2图象上的不同的两个点,当x1>x2时,y1<y2,
可得:a-1<0,
解得:a<1.
故选D.【点睛】本题考查了一次函数图象上点的坐标特征.函数经过的某点一定在函数图象上.解答该题时,利用了一次函数的图象y=kx+b的性质:当k<0时,y随着x的增大而减小;k>0时,y随着x的增大而增大;k=0时,y的值=b,与x没关系.8、D【解析】
根据轴对称图形和中心对称图形的概念求解.【详解】解:A、是轴对称图形,不是中心对称图形.故错误;
B、不是轴对称图形,是中心对称图形.故错误;
C、是轴对称图形,不是中心对称图形.故错误;
D、是轴对称图形,也是中心对称图形.故正确.故选:D.【点睛】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后两部分重合.9、C【解析】
试题分析:丙的平均数==9,丙的方差=[1+1+1=1]=0.4,乙的平均数==8.2,由题意可知,丙的成绩最好,故选C.考点:1、方差;2、折线统计图;3、加权平均数10、B【解析】
根据配方法解方程的方法和步骤解答即可.【详解】解:对于方程,移项,得:,两边同时除以3,得:,配方,得:,即.故选:B.【点睛】本题考查了用配方法解一元二次方程,属于基础题型,熟练掌握配方的方法和步骤是解答的关键.11、B【解析】
依据关于x的一次函数y=x+m+2不经过第四象限,求得m的取值范围,依据关于x的分式方程有非负整数解,即可得到整数m的取值,即可得到满足条件的m的和.【详解】∵一次函数y=x+m+2不经过第四象限,
∴m+2≥0,
∴m≥-2,
∵关于x的分式方程=2有非负整数解
∴x=3-m为非负整数且3-m≠2,
又∵m≥-2,
∴m=-2,-1,0,2,3,
∴所有符合条件的m的和是2,
故选:B.【点睛】考查了一次函数的图象与性质以及分式方程的解.注意根据题意求得满足条件的m的值是关键.12、C【解析】
解:∵Rt△ABC中,AB=AC,点D为BC中点.∠MDN=90°,∴AD=DC,∠EAD=∠C=45°,∠EDA=∠MDN-∠ADN=90°-∠ADN=∠FDC.∴△EDA≌△FDC(ASA).∴AE=CF.∴BE+CF=BE+AE=AB.在Rt△ABC中,根据勾股定理,得AB=BC.∴(BE+CF)=BC.∴结论①正确.设AB=AC=a,AE=b,则AF=BE=a-b.∴.∴.∴结论②正确.如图,过点E作EI⊥AD于点I,过点F作FG⊥AD于点G,过点F作FH⊥BC于点H,ADEF相交于点O.∵四边形GDHF是矩形,△AEI和△AGF是等腰直角三角形,∴EO≥EI(EF⊥AD时取等于)=FH=GD,OF≥GH(EF⊥AD时取等于)=AG.∴EF=EO+OF≥GD+AG=AD.∴结论④错误.∵△EDA≌△FDC,∴.∴结论③错误.又当EF是Rt△ABC中位线时,根据三角形中位线定理知AD与EF互相平分.∴结论⑤正确.综上所述,结论①②⑤正确.故选C.二、填空题(每题4分,共24分)13、1【解析】
解:∵在△ABC中,AD⊥BC,垂足为D,
∴△ADC是直角三角形;
∵E是AC的中点.
∴DE=AC(直角三角形的斜边上的中线是斜边的一半);
又∵DE=5,AB=AC,
∴AB=1;
故答案为:1.14、2.【解析】
由矩形的性质得出∠ABC=90°,OA=OB,再证明△AOB是等边三角形,得出OA=AB,求出AB,然后根据勾股定理即可求出BC.【详解】∵四边形ABCD是矩形,∴∠ABC=90°,OA=AC,OB=BD,AC=BD,∴OA=OB,∵∠AOD=120°,∴∠AOB=60°,∴△AOB是等边三角形,∴OA=AB,∴AC=2OA=4,∴AB=2∴BC=;故答案为:2.【点睛】本题考查了矩形的性质、等边三角形的判定与性质以及勾股定理;熟练掌握矩形的性质,证明三角形是等边三角形是解决问题的关键.15、x≤1【解析】
先求出每个不等式的解集,再求出不等式组的解集即可.【详解】解:解不等式①得:x≤1,解不等式②得:x<7,∴不等式组的解集是x≤1,故答案为:x≤1.【点睛】本题考查了解一元一次不等式组,能根据不等式的解集求出不等式组的解集是解此题的关键.16、1【解析】试题分析:先求出每周课外阅读时间在1~2(不含1)小时的学生所占的百分比,再乘以全校的人数,即可得出答案.解:根据题意得:1200×=1(人),答:估计每周课外阅读时间在1~2(不含1)小时的学生有1人;故答案为1.考点:用样本估计总体.17、1cm【解析】
根据平行线分线段成比例定理,得到BF=FC,根据三角形中位线定理求出AC的长.【详解】解:∵E为△ABC中AB边的中点,∴BE=EA.∵EF∥BC,∴=,∴BF=FC,则EF为△ABC的中位线,∴AC=2EF=1.故答案为1.【点睛】本题考查的是三角形中位线定理的运用和平行线分线段成比例定理的运用,掌握三角形的中位线平行于第三边且等于第三边的一半是解题的关键.18、(3,1).【解析】∵四边形ABCD为平行四边形.∴AB∥CD,又A,B两点的纵坐标相同,∴C、D两点的纵坐标相同,是1,又AB=CD=3,∴C(3,1).三、解答题(共78分)19、(1);(2)1<x<3;(3)8;(4)P(-2,-6)【解析】
(1)根据图像可知,两条直线的交点即为方程组的解;(2)找出两条直线的图像在x轴上方的公共部分的x的取值范围即可;(3)令x=0,求出y1与y2的值,即可得A、B两点的坐标,进而可得AB的长度,根据C点坐标为(2,2),可得△ABC的高,即可求出面积;(4)令P(x0,2x0-2),根据三角形面积公式可得x0=±2,由点P异于点C可得x0=-2,代入y1=2x-2即可的P点坐标.【详解】(1)由图像可知直线y1=2x-2的图像与直线y2=-2x+6的交点坐标为(2,2)∴方程组的解集为,(2)根据图像可知:当y1>0与y2>0同时成立时,x的取值范围为1<x<3.(3)∵令x=0,则y1=-2,y2=6,∴A(0,-2),B(0,6).∴AB=8.∴S△ABC=×8×2=8.(4)令P(x0,2x0-2),则S△ABP=×8×|x0|=8,∴x0=±2.∵点P异于点C,∴x0=-2,2x0-2=-6.∴P(-2,-6).【点睛】此题考查了一次函数综合题,涉及的知识有:一次函数与坐标轴的交点,坐标与图形性质,三角形面积,以及两一次函数的交点,熟练掌握一次函数图像的特征是解题关键.20、(1);(2)5;(3)PA+PB的长度最短时,点P的坐标为(,0),PA+PB的最短长度为.【解析】
(1)直接利用两点之间距离公式直接求出即可;
(2)根据题意列式计算即可;
(3)利用轴对称求最短路线方法得出P点位置,进而求出PA+PB的最小值.【详解】(1)(1)∵A(2,3),B(-1,-2),
∴A,B两点间的距离为:;(2)∵M,N在平行于y轴的直线上,点M的纵坐标为-2,点N的纵坐标为3,
则M,N两点间的距离为3-(-2)=5;(3)如图,作点A关于x轴的对称点A′,连接A′B与x轴交于点P,此时PA+PB最短设A′B的解析式为y=kx+b将A′(0,-4),B(4,2)代入y=kx+b得解得∴直线设A′B的解析式为令y=0得∴P(0,).∵PA′=PA∴PA+PB=PA′+PB=A′B=∴PA+PB的长度最短时,点P的坐标为(,0),PA+PB的最短长度为.【点睛】考查了利用轴对称求最值问题以及两点之间距离公式,正确转化代数式为两点之间距离问题是解题关键.21、(1),16;(2)-8<x<0或x>4;(3)点P的坐标为().【解析】
(1)将点B代入y1=k1x+2和y2=,可求出k1=k2=16.(2)由图象知,-8<x<0和x>4(3)先求出四边形ODAC的面积,从而求出DE的长,然后得出点E的坐标,最后求出直线OP的解析式即可得出点P的坐标.【详解】解:(1)把B(-8,-2)代入y1=k1x+2得-8k1+2=-2,解得k1=∴一次函数解析式为y1=x+2;把B(-8,-2)代入得k2=-8×(-2)=16,
∴反比例函数解析式为故答案为:,16;(2)∵当y1>y2时即直线在反比例函数图象的上方时对应的x的取值范围,
∴-8<x<0或x>4;
故答案为:-8<x<0或x>4;(3)由(1)知y1=x+2,y2=,∴m=4,点C的坐标是(0,2),点A的坐标是(4,4),∴CO=2,AD=OD=4,∴S梯形ODAC=·OD=×4=12.∵S梯形ODAC∶S△ODE=3∶1,∴S△ODE=×S梯形ODAC=×12=4,即OD·DE=4,∴DE=2,∴点E的坐标为(4,2).又∵点E在直线OP上,∴直线OP的解析式是y=x,∴直线OP与反比例函数y2=的图象在第一象限内的交点P的坐标为(4,2).【点睛】本题考查了反比例函数与一次函数的交点问题,待定系数法求反比例函数与一次函数的解析式,三角形、梯形的面积,根据图象找出自变量的取值范围.在解题时要综合应用反比例函数的图象和性质以及求一次函数与反比例函数交点坐标是本题的关键.22、(1);(2),.【解析】
(1)直接利用二次根式的混合运算法则计算得出答案;(2)直接利用分解因式法解方程即可.【详解】(1)原式(2),,,∴,.【点睛】此题主要考查了因式分解法解方程以及二次根式的混合运算,正确分解因式是解题关键.23、(1)OE=OF,理由见解析;(2)当点O运动到AC的中点时,四边形AECF是矩形.理由见解析;(3)当点O运动到AC的中点时,且△ABC满足∠ACB为直角的直角三角形时,四边形AECF是正方形.理由见解析;【解析】
(1)由平行线的性质和角平分线定义得出∠OEC=∠OCE,∠OFC=∠OCF,根据“等角对等边”得出OE=OC,OF=OC,即可得出结论;
(2)由(1)得出的OE=OC=OF,点O运动到AC的中点时,则由OE=OC=OF=OA,证出四边形AECF是平行四边形,再证出∠ECF=90°即可;
(3)由已知和(2)得到的结论,点O运动到AC的中点时,且△ABC满足∠ACB为直角的直角三角形时,则推出四边形AECF是矩形且对角线垂直,得出四边形AECF是正方形.【详解】(1)OE=OF,理由如下:
∵MN∥BC,
∴∠OEC=∠BCE,∠OFC=∠DCF,
∵CE平分∠BCA,CF平分∠ACD,
∴∠OCE=∠BCE,∠OCF=∠DCF,
∴∠OCE=∠OEC,∠OCF=∠OFC,
∴OE=OC,OF=OC,
∴OE=OF;
(2)解:当点O运动到AC的中点时,四边形AECF是矩形.
∵当点O运动到AC的中点时,AO=CO,
又EO=FO,
∴四边形AECF为平行四边形,
又CE为∠ACB的平分线,CF为∠ACD的平分线,
∴∠BCE=∠ACE,∠ACF=∠DCF,
∴∠BCE+∠ACE+∠ACF+∠DCF=2(∠ACE+∠ACF)=180°,
即∠ECF=90°,
∴四边形AECF是矩形;
(3)解:当点O运动到AC的中点时,且△ABC满足∠ACB为直角的直角三角形时,四边形AECF是正方形.理由如下:
∵由(2)知,当点O运动到AC的中点时,四边形AECF是矩形,
∵MN∥BC,
当∠ACB=90°,则∠AOF=∠COE=∠COF=∠AOE=90°,
∴AC⊥EF,
∴四边形AECF是正方形.【点睛】此题考查四边形综合题目,正方形和矩形的判定、平行四边形的判定、等腰
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- Porantherine-生命科学试剂-MCE-2296
- 1-Propinoyl-Lysergic-acid-methylisopropylamide-1P-MiPLA-生命科学试剂-MCE-1036
- 2025年度银行账户管理与个人财富管理合作协议方
- 2025年度高层建筑基础钻孔施工与质量控制合同
- 二零二五年度特色餐厅厨师劳动合同及劳动争议处理协议
- 2025年度绿色环保版商铺租赁合同
- 2025年度环保项目短期现场作业人员劳动合同
- 二零二五年度绿色环保产业财产赠与协议
- 2025年度新媒体运营专员聘用合同简易制
- 二零二五年度商标侵权违约赔偿合同范本
- 企业融资报告特斯拉成功案例分享
- 合资经营工厂合同范本
- 2024年新疆(兵团)公务员考试《行测》真题及答案解析
- 2024年《论教育》全文课件
- 2023年江苏省苏州市中考物理试卷及答案
- 销售调味品工作总结5篇
- 2024年江苏省劳动合同条例
- 成人鼻肠管的留置与维护
- 《中电联团体标准-220kV变电站并联直流电源系统技术规范》
- 中国主要蜜源植物蜜源花期和分布知识
- 电化学免疫传感器的应用
评论
0/150
提交评论