茂名市重点中学2024年八年级数学第二学期期末综合测试试题含解析_第1页
茂名市重点中学2024年八年级数学第二学期期末综合测试试题含解析_第2页
茂名市重点中学2024年八年级数学第二学期期末综合测试试题含解析_第3页
茂名市重点中学2024年八年级数学第二学期期末综合测试试题含解析_第4页
茂名市重点中学2024年八年级数学第二学期期末综合测试试题含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

茂名市重点中学2024年八年级数学第二学期期末综合测试试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.若(x-9)(2x-n)=2x2+mx-18,则m、n的值分别是()A.m=-16,n=-2 B.m=16,n=-2 C.m=-16,n=2 D.m=16,n=22.如图,在ABCD中,CD=2AD,BE⊥AD于点E,F为DC的中点,连结EF、BF,下列结论:①∠ABC=2∠ABF;②EF=BF;③S四边形DEBC=2S△EFB;④∠CFE=3∠DEF,其中正确结论的个数共有(

).A.1个 B.2个 C.3个 D.4个3.在平面直角坐标系中,点到原点的距离是()A. B. C. D.4.在平面直角坐标系中,点A的坐标为(﹣3,4),那么下列说法正确的是()A.点A与点B(﹣3,﹣4)关于y轴对称B.点A与点C(3,﹣4)关于x轴对称C.点A与点E(﹣3,4)关于第二象限的平分线对称D.点A与点F(3,﹣4)关于原点对称5.函数y=mx+n与y=nx的大致图象是()A. B.C. D.6.如图,已知菱形ABCD的边长为2,∠DAB=60°,则对角线BD的长是()A.1 B. C.2 D.7.点P是图①中三角形上一点,坐标为(a,b),图①经过变化形成图②,则点P在图②中的对应点P’的坐标为()A. B. C. D.8.木匠有32米的木材,想要在花圃周围做边界,以下四种设计方案中,设计不合理的是()A. B. C. D.9.如图,腰长为的等腰直角三角形绕直角顶点顺时针旋转得到,则图中阴影部分的面积等于()A. B. C. D.10.已知数据:2,﹣1,3,5,6,5,则这组数据的众数和极差分别是()A.5和7 B.6和7 C.5和3 D.6和311.如图,过正方形的顶点作直线,点、到直线的距离分别为和,则的长为()A. B. C. D.12.的倒数是()A.- B. C. D.二、填空题(每题4分,共24分)13.我市在旧城改造中,计划在市内一块如下图所示的三角形空地上种植草皮以美化环境,已知这种草皮每平方米售价元,则购买这种草皮至少需要______元.14.如图,菱形ABCD的周长是20,对角线AC、BD相交于点O.若BO=3,则菱形ABCD的面积为______.15.某商场利用“五一”开展促销活动:一次性购买某品牌服装件,每件仅售元,如果超过件,则超过部分可享受折优惠,顾客所付款(元)与所购服装件之间的函数解析式为__________.16.已知点P(a+3,7+a)位于二、四象限的角平分线上,则点P的坐标为_________________.17.张老师公布班上6名同学的数学竞赛成绩时,有意公布了5个人的得分:78,92,61,85,75,又公布了6个人的平均分:80,还有一个未公布,这个未公布的得分是_____.18.如图,四边形是正方形,直线分别过三点,且,若与的距离为6,正方形的边长为10,则与的距离为_________________.三、解答题(共78分)19.(8分)甲、乙两校参加市教育局举办的初中生英语口语竞赛,两校参赛人数相等.比赛结束后,发现学生成绩分别为7分、8分、9分、10分(满分为10分).依据统计数据绘制了如下尚不完整的统计图表.分数7分8分9分10分人数1108(1)请将甲校成绩统计表和图2的统计图补充完整;(2)经计算,乙校的平均分是8.3分,中位数是8分,请写出甲校的平均分、中位数;并从平均分和中位数的角度分析哪个学校成绩较好.20.(8分)如图,在中,,E为CA延长线上一点,D为AB上一点,F为外一点且连接DF,BF.(1)当的度数是多少时,四边形ADFE为菱形,请说明理由:(2)当AB=时,四边形ACBF为正方形(请直接写出)21.(8分)(1)问题发现.如图1,和均为等边三角形,点、、均在同一直线上,连接.①求证:.②求的度数.③线段、之间的数量关系为__________.(2)拓展探究.如图2,和均为等腰直角三角形,,点、、在同一直线上,为中边上的高,连接.①请判断的度数为____________.②线段、、之间的数量关系为________.(直接写出结论,不需证明)22.(10分)如图,中,延长到点,延长到点,使,连接、.求证:四边形是平行四边形.23.(10分)已知直线l1:y=x+n﹣2与直线l2:y=mx+n相交于点P(1,2).(1)求m,n的值;(2)请结合图象直接写出不等式mx+n>x+n﹣2的解集.(3)若直线l1与y轴交于点A,直线l2与x轴交于点B,求四边形PAOB的面积.24.(10分)因式分解=__________________25.(12分)问题情境:在中,,点是的中点,以为角的顶点作.感知易证:(1)如图1,当射线经过点时,交边于点.将从图1中的位置开始,绕点按逆时针方向旋转,使射线、始终分别交边,于点、,如图2所示,易证,则有.操作探究:(2)如图2,与是否相似,若相似,请证明;若不相似,请说明理由;拓展应用:(3)若,直接写出当(2)中的旋转角为多少度时,与相似.26.探索发现:,,,根据你发现的规律,回答下列问题:(1),;(2)利用你发现的规律计算:;(3)灵活利用规律解方程:.

参考答案一、选择题(每题4分,共48分)1、A【解析】

先利用整式的乘法法则进行计算,再根据等式的性质即可求解.【详解】∵(x-9)(2x-n)=2x2-nx-18x+9n=2x2-(n+18)x+9n=2x2+mx-18,∴-(n+18)=m,9n=-18∴n=-2,m=-16故选A.【点睛】此题主要考查整式的乘法,解题的关键是熟知整式乘法的运算法则.2、D【解析】分析:如图延长EF交BC的延长线于G,取AB的中点H连接FH.证明△DFE≌△FCG得EF=FG,BE⊥BG,四边形BCFH是菱形即可解决问题;详解:如图延长EF交BC的延长线于G,取AB的中点H连接FH.∵CD=2AD,DF=FC,∴CF=CB,∴∠CFB=∠CBF,∵CD∥AB,∴∠CFB=∠FBH,∴∠CBF=∠FBH,∴∠ABC=2∠ABF.故①正确,∵DE∥CG,∴∠D=∠FCG,∵DF=FC,∠DFE=∠CFG,∴△DFE≌△FCG,∴FE=FG,∵BE⊥AD,∴∠AEB=90°,∵AD∥BC,∴∠AEB=∠EBG=90°,∴BF=EF=FG,故②正确,∵S△DFE=S△CFG,∴S四边形DEBC=S△EBG=2S△BEF,故③正确,∵AH=HB,DF=CF,AB=CD,∴CF=BH,∵CF∥BH,∴四边形BCFH是平行四边形,∵CF=BC,∴四边形BCFH是菱形,∴∠BFC=∠BFH,∵FE=FB,FH∥AD,BE⊥AD,∴FH⊥BE,∴∠BFH=∠EFH=∠DEF,∴∠EFC=3∠DEF,故④正确,故选D.点睛:本题考查平行四边形的性质和判定、菱形的判定和性质、直角三角形斜边中线的性质、全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考选择题中的压轴题.3、C【解析】

根据勾股定理可求点到原点的距离.【详解】解:点到原点的距离为:;故选:C.【点睛】本题考查了勾股定理,两点间的距离公式,熟练掌握勾股定理是解题的关键.4、D【解析】

根据关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数;关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变;关于原点对称的点的坐标特点:两个点关于原点对称时,它们的坐标符号相反;关于第二象限角平分线的对称的两点坐标的关系,纵横坐标交换位置且变为相反数可得答案.【详解】解:A、点A的坐标为(-3,4),∴则点A与点B(-3,-4)关于x轴对称,故此选项错误;

B、点A的坐标为(-3,4),∴点A与点C(3,-4)关于原点对称,故此选项错误;

C、点A的坐标为(-3,4),∴点A与点E(-3,4)重合,故此选项错误;

D、点A的坐标为(-3,4),∴点A与点F(3,-4)关于原点对称,故此选项正确;

故选D.【点睛】此题主要考查了关于xy轴对称点的坐标点的规律,以及关于原点对称的点的坐标特点,关键是熟练掌握点的变化规律,不要混淆.5、D【解析】

当m>0,n>0时,y=mx+n经过一、二、三象限,y=nx经过一、三象限;当m>0,n<0时,y=mx+n经过一、三、四象限,y=nx经过二、四象限;当m<0,n>0时,y=mx+n经过一、二、四象限,y=nx经过一、三象限;当m<0,n<0时,y=mx+n经过二、三、四象限,y=nx经过二、四象限.综上,A,B,C错误,D正确故选D.考点:一次函数的图象6、C【解析】试题分析:∵菱形ABCD的边长为1,∴AD=AB=1,又∵∠DAB=60°,∴△DAB是等边三角形,∴AD=BD=AB=1,则对角线BD的长是1.故选C.考点:菱形的性质.7、A【解析】

根据已知点的坐标变换发现规律进行求解.【详解】根据题意得(2,0)变化后的坐标为(1,0);(2,4)变化后的坐标为(1,4);故P点(a,b)变化后的坐标为故选A.【点睛】此题主要考查坐标的变化,解题的关键是根据题意发现规律进行求解.8、A【解析】

根据平移的性质以及矩形的周长公式分别求出各图形的周长即可得解.【详解】A、∵垂线段最短,∴平行四边形的另一边一定大于6m,∵2(10+6)=32m,∴周长一定大于32m;B、周长=2(10+6)=32m;C、周长=2(10+6)=32m;D、周长=2(10+6)=32m;故选:A.【点睛】本题考查了矩形的周长,平行四边形的周长公式,平移的性质,根据平移的性质第三个图形、第四个图形的周长相当于矩形的周长是解题的关键.9、D【解析】

根据旋转的性质求出的值,根据勾股定理和阴影部分面积等于△ADB的面积减△BEF的面积,即可求得阴影部分的面积.【详解】旋转,,,,,,设,则,,,,..故选D.【点睛】本题考查了阴影部分的面积问题,掌握旋转的性质和三角形的面积公式是解题的关键.10、A【解析】

众数是一组数据中出现次数最多的数;极差就是这组数中最大值与最小值的差.【详解】解:这组数据的众数是5;极差是:;故选:A.【点睛】考查了众数和极差的概念.众数是一组数据中出现次数最多的数;极差就是这组数中最大值与最小值的差.11、A【解析】

先证明△ABE≌△BCF,得到BE=CF=1,在Rt△ABE中利用勾股定理可得AB=2,由此可得AC长.【详解】解:∵四边形ABCD是正方形,

∴AB=AC,∠ABC=90°.

∵∠ABE+∠EAB=90°,∠ABE+∠CBF=90°,

∴∠EAB=∠CBF.

又∠AEB=∠CFB=90°,

∴△ABE≌BCF(AAS).

∴BE=CF=1.

在Rt△ABE中,利用勾股定理可得AB===2.

则AC=AB=2.

故选A.【点睛】本题主要考查了正方形的性质、全等三角形的判定和性质,以及勾股定理,解题的关键是通过全等转化线段使其划归于一直角三角形中,再利用勾股定理进行求解.12、C【解析】的倒数是,故选C.二、填空题(每题4分,共24分)13、150a【解析】

作BA边的高CD,设与BA的延长线交于点D,则∠DAC=30°,由AC=30m,即可求出CD=15m,然后根据三角形的面积公式即可推出△ABC的面积为150m2,最后根据每平方米的售价即可推出结果.【详解】解:如图,作BA边的高CD,设与BA的延长线交于点D,∵∠BAC=150°,∴∠DAC=30°,∵CD⊥BD,AC=30m,∴CD=15m,∵AB=20m,∴S△ABC=AB×CD=×20×15=150m2,∵每平方米售价a元,∴购买这种草皮的价格为150a元.故答案为:150a元.【点睛】本题主要考查三角形的面积公式,含30度角的直角三角形的性质,关键在于做出AB边上的高,根据相关的性质推出高CD的长度,正确的计算出△ABC的面积.14、24【解析】

由菱形的性质可得AB=5,AC⊥BD,AO=CO,BO=DO=3,由勾股定理可求AO=4,由菱形的面积公式可求解.【详解】解:∵菱形ABCD的周长是20,

∴AB=5,AC⊥BD,AO=CO,BO=DO=3,

∴AO=AB2-BO2=4

∴AC=8,BD=6

∴菱形ABCD的面积=12AC【点睛】本题考查了菱形的性质,熟练运用菱形的性质是本题的关键.15、【解析】

因为所购买的件数x≥3,所以顾客所付款y分成两部分,一部分是3×80=240,另一部分是(x-3)×80×0.8,让它们相加即可.【详解】解:∵x≥3,∴y=3×80+(x-3)×80×0.8=64x+48(x≥3).故答案是:.【点睛】此题主要考查利用一次函数解决实际问题,找到所求量的等量关系是解决问题的关键.16、(-2,2)【解析】

根据二、四象限的角平分线上点的坐标特征得到a+3+7+a=0,然后解方程求出a的值,代入即可得出结论.【详解】根据题意得:a+3+7+a=0,解得:a=﹣5,∴a+3=-2,7+a=2,∴P(-2,2).故答案为:(-2,2).【点睛】本题考查了点的坐标.掌握二、四象限的角平分线上点的坐标特征是解答本题的关键.17、1.【解析】

首先设这个未公布的得分是x,根据算术平均数公式可得关于x的方程,解方程即可求得答案.【详解】设这个未公布的得分是x,则:,解得:x=1,故答案为:1.【点睛】本题考查了算术平均数,关键是掌握对于n个数x1,x2,…,xn,则就叫做这n个数的算术平均数.18、1【解析】

画出l1到l2,l2到l3的距离,分别交l2,l3于E,F,通过证明△ABE≌△BCF,得出BF=AE,再由勾股定理即可得出结论.【详解】过点A作AE⊥l1,过点C作CF⊥l2,∴∠CBF+∠BCF=90°,四边形ABCD是正方形,∴AB=BC=CD=AD,∴∠DAB=∠ABC=∠BCD=∠CDA=90°,∴∠ABE+∠CBF=90°,∵l1∥l2∥l3,∴∠ABE=∠BCF,在△ABE和△BCF中,,∴△ABE≌△BCF(AAS),∴BF=AE,∴BF2+CF2=BC2,∵正方形ABCD的面积为100,∴CF2=100-62=64,∴CF=1.故答案为:1.【点睛】本题主要考查了正方形的性质,全等三角形的判定与性质以及正方形面积的求解方法,能正确作出辅助线是解此题的关键,难度适中.三、解答题(共78分)19、(1)见解析;(2)见解析【解析】试题分析:(1)根据已知10分的有5人,所占扇形圆心角为90°,可以求出总人数,即可得出甲校9分的人数和乙校8分的人数,从而可补全统计图;(2)根据把分数从小到大排列,利用中位数的定义解答,根据平均数求法得出甲的平均数.试题解析:(1)根据已知10分的有5人,所占扇形圆心角为90°,可以求出总人数为:5÷=20(人),即可得出8分的人数为:20-8-4-5=3(人),画出图形如图:甲校9分的人数是:20-11-8=1(人),(2)甲校的平均分为=(7×11+8×0+9×1+10×8)=8.3分,分数从低到高,第10人与第11人的成绩都是7分,∴中位数=(7+7)=7(分);平均分相同,乙的中位数较大,因而乙校的成绩较好.考点:1.扇形统计图;2.条形统计图;3.算术平均数;4.中位数.20、(1)当时,四边形ADFE为菱形,理由详见解析;(2). 【解析】

(1)当∠CAB=60°时,四边形ADFE为菱形;由平行线的性质可证∠AFE=∠DAF,∠AEF=∠CAB=60°,可得△AEF,△AFD都是等边三角形,可得AE=AF=AD=EF=FD,即可得结论.(2)由正方形的性质可求解.【详解】(1)当∠CAB=60°时,四边形ADFE为菱形,理由如下:∵AE=AF=AD∴∠AEF=∠AFE,∵EF∥AB∴∠AFE=∠DAF,∠AEF=∠CAB=60°∴∠FAD=60°∴△AEF,△AFD都是等边三角形∴AE=AF=AD=EF=FD∴四边形ADFE为菱形(2)若四边形ACBF为正方形∴AC=BC=1,∠ACB=90°∴AB=∴当AB=时,四边形ACBF为正方形故答案为【点睛】本题考查了正方形的判定和性质,菱形的判定和性质,等腰三角形的性质,灵活运用这些性质解决问题是本题的关键.21、(1)①详见解析;②60°;③;(2)①90°;②【解析】

(1)易证∠ACD=∠BCE,即可求证△ACD≌△BCE,根据全等三角形对应边相等可求得AD=BE,根据全等三角形对应角相等即可求得∠AEB的大小;(2)易证△ACD≌△BCE,可得∠ADC=∠BEC,进而可以求得∠AEB=90°,即可求得DM=ME=CM,即可解题.【详解】解:(1)①证明:∵和均为等边三角形,∴,,又∵,∴,∴.②∵为等边三角形,∴.∵点、、在同一直线上,∴,又∵,∴,∴.③,∴.故填:;(2)①∵和均为等腰直角三角形,∴,,又∵,∴,∴,在和中,,∴,∴.∵点、、在同一直线上,∴,∴.②∵,∴.∵,,∴.又∵,∴,∴.故填:①90°;②.【点睛】本题考查了全等三角形的判定,考查了全等三角形对应边相等、对应角相等的性质,本题中求证△ACD≌△BCE是解题的关键.22、证明见解析【解析】

根据平行四边形性质得出AD//BC,AD=BC,求出AF=EC,AF//EC,得出四边形DEBF是平行四边形,根据平行四边形的性质推出即可【详解】证明:∵四边形是平行四边形,∴且,又∵,∴,,∴四边形是平行四边形.【点睛】此题主要考查平行四边形的判定与性质,解题关键在于掌握平行四边形的性质及定理23、(1)m=﹣1,n=3;(2)x<1;(3)四边形PAOB的面积为:3.1.【解析】

(1)直接把已知点代入函数关系式进而得出m,n的值;(2)直接利用函数图形得出不等式mx+n>x+n﹣2的解集;(3)分别得出AO,BO的长,进而得出四边形PAOB的面积.【详解】(1)把P(1,2)代入y=x+n﹣2得:1+n﹣2=2,解得:n=3;把P(1,2)代入y=mx+3得:m+3=2,解得m=﹣1;(2)不等式mx+n>x+n﹣2的解集为:x<1;(3)当x=0时,y=x+1=1,故OA=1,当y=0时,y=﹣x+3,解得:x=3,则OB=3,四边形PAOB的面积为:(1+2)×1+×2×(3﹣1)=3.1.【点睛】此题主要考查了一次函数与一元一次不等式以及四边形的面积,正确利用函数图象分析是解题关键.24、(x+1)1(x-1)1.【解析】

首先利用平方差公式分解因式,进而利用完全平方公式分解因式得出即可.【详解】解:(x1+4)1-16x1

=(x1+4+4x)(x1+4-4x)

=(x+1)1(x-1)1.故答案为:(x+1)1(x-1)1.【点睛】本题考查公式法分解因式,熟练应用乘法公式是解题关键.25、(1)CD;(2)△BDF∽△DEF,理由见详解;(3)10°或40°.【解析】

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论