湖南省衡阳市衡阳县2024届八年级数学第二学期期末调研试题含解析_第1页
湖南省衡阳市衡阳县2024届八年级数学第二学期期末调研试题含解析_第2页
湖南省衡阳市衡阳县2024届八年级数学第二学期期末调研试题含解析_第3页
湖南省衡阳市衡阳县2024届八年级数学第二学期期末调研试题含解析_第4页
湖南省衡阳市衡阳县2024届八年级数学第二学期期末调研试题含解析_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湖南省衡阳市衡阳县2024届八年级数学第二学期期末调研试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.如图,菱形中,,点是边上一点,占在上,下列选项中不正确的是()A.若,则B.若,则C.若,则的周长最小值为D.若,则2.下表记录了甲、乙、丙、丁四名射击运动员最近几次选拔赛成绩的平均数和方差:根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应选择()A.甲 B.乙 C.丙 D.丁3.下列各式中正确的是()A. B. C. D.4.(2011•潍坊)在今年我市初中学业水平考试体育学科的女子800米耐力测试中,某考点同时起跑的小莹和小梅所跑的路程S(米)与所用时间t(秒)之间的函数图象分别为线段OA和折线OBCD,下列说法正确的是()A、小莹的速度随时间的增大而增大 B、小梅的平均速度比小莹的平均速度大C、在起跑后180秒时,两人相遇 D、在起跑后50秒时,小梅在小莹的前面5.若分式有意义,则实数的取值范围是()A.x=2 B.x=-2 C.x≠2 D.x≠-26.某园林队原计划由6名工人对180平方米的区域进行绿化,由于施工时增加了2名工人,结果比原计划提前3小时完成任务,若每人每小时绿化的面积相同,求每人每小时绿化的面积。若设每人每小时绿化的面积为平方米,根据题意下面所列方程正确的是()A. B.C. D.7.某快递公司快递员张海六月第三周投放快递物品件数为:有1天是41件,有2天是35件,有4天是37件,这周里张海日平均投递物品件数为()A.36件 B.37件 C.38件 D.38.5件8.某旅游景点的游客人数逐年增加,据有关部门统计,2015年约为12万人次,若2017年约为17万人次,设游客人数年平均增长率为x,则下列方程中正确的是()A.12(1+x)=17B.17(1﹣x)=12C.12(1+x)2=17D.12+12(1+x)+12(1+x)2=179.一元一次不等式组的解集在数轴上表示为().A. B.C. D.10.如图在中,D、E分别是AB、AC的中点若的周长为16,则的周长为()A.6 B.7 C.8 D.911.已知图2是由图1七巧板拼成的数字“0”,己知正方形ABCD的边长为4,则六边形EFGHMN的周长为()A. B. C. D.1212.如图,在△ABC中,∠C=90°,点D,E分别在边AC,AB上.若∠B=∠ADE,则下列结论正确的是()A.∠A和∠B互为补角 B.∠B和∠ADE互为补角C.∠A和∠ADE互为余角 D.∠AED和∠DEB互为余角二、填空题(每题4分,共24分)13.观察下列各式:,,,……请你将发现的规律用含自然数n(n≥1)的等式表示出来__________________.14.为了考察甲、乙两块地小麦的长势,分别从中随机抽出10株苗,测得苗高如图所示.若和分别表示甲、乙两块地苗高数据的方差,则________.(填“>”、“<”或“=”).15.如图1,边长为a的正方形发生形变后成为边长为a的菱形,如果这个菱形的一组对边之间的距离为h,我们把的值叫做这个菱形的“形变度”.例如,当形变后的菱形是如图2形状(被对角线BD分成2个等边三角形),则这个菱形的“形变度”为2:.如图3,正方形由16个边长为1的小正方形组成,形变后成为菱形,△AEF(A、E、F是格点)同时形变为△A′E′F′,若这个菱形的“形变度”k=,则S△A′E′F′=__16.关于x的分式方程的解为非正数,则k的取值范围是____.17.已知:线段AB,BC.求作:平行四边形ABCD.以下是甲、乙两同学的作业.甲:①以点C为圆心,AB长为半径作弧;②以点A为圆心,BC长为半径作弧;③两弧在BC上方交于点D,连接AD,CD.四边形ABCD即为所求平行四边形.(如图1)乙:①连接AC,作线段AC的垂直平分线,交AC于点M;②连接BM并延长,在延长线上取一点D,使MD=MB,连接AD,CD.四边形ABCD即为所求平行四边形.(如图2)老师说甲、乙同学的作图都正确,你更喜欢______的作法,他的作图依据是:______.18.在数学课上,老师提出如下问题:如图1,将锐角三角形纸片ABC(BC>AC)经过两次折叠,得到边AB,BC,CA上的点D,E,F.使得四边形DECF恰好为菱形.小明的折叠方法如下:如图2,(1)AC边向BC边折叠,使AC边落在BC边上,得到折痕交AB于D;(2)C点向AB边折叠,使C点与D点重合,得到折痕交BC边于E,交AC边于F.老师说:“小明的作法正确.”请回答:小明这样折叠的依据是______________________________________.三、解答题(共78分)19.(8分)如图,在坐标系中,△ABC中A(-2,-1)、B(-3,-4)、C(0,-3).(1)请画出△ABC关于坐标原点O的中心对称图形△A′B′C′,并写出点A的对应点A′的坐标;(2)请直接写出:以A、B、C为顶点的平行四边形的第四个顶点D的所有可能的坐标.20.(8分)如图,菱形中,是的中点,,.(1)求对角线,的长;(2)求菱形的面积.21.(8分)(1)已知一次函数的图象经过,两点.求这个一次函数的解析式;并判断点是否在这个一次函数的图象上;(2)如图所示,点D是等边内一点,,,,将绕点A逆时针旋转到的位置,求的周长.22.(10分)如图,在长方形ABCD中,AB=6,BC=8,点O在对角线AC上,且OA=OB=OC,点P是边CD上的一个动点,连接OP,过点O作OQ⊥OP,交BC于点Q.(1)求OB的长度;(2)设DP=x,CQ=y,求y与x的函数表达式(不要求写自变量的取值范围);(3)若OCQ是等腰三角形,求CQ的长度.23.(10分)供电局的电力维修工要到30千米远的郊区进行电力抢修.技术工人骑摩托车先走,15分钟后,抢修车装载着所需材料出发,结果他们同时到达.已知抢修车的速度是摩托车的1.5倍,求这两种车的速度?24.(10分)某公司开发出一款新的节能产品,该产品的成本价为8元/件,该产品在正式投放市场前通过代销点进行了为期一个月30天的试销售,售价为13元/件,工作人员对销售情况进行了跟踪记录,并将记录情况绘制成如图所示的图象,图中的折线表示日销量(件)与销售时间(天)之间的函数关系.(1)直接写出与之间的函数解析式,并写出的取值范围.(2)若该节能产品的日销售利润为(元),求与之间的函数解析式.日销售利润不超过1950元的共有多少天?(3)若,求第几天的日销售利润最大,最大的日销售利润是多少元?25.(12分)已知一次函数y=﹣x+1.(1)在给定的坐标系中画出该函数的图象;(2)点M(﹣1,y1),N(3,y2)在该函数的图象上,试比较y1与y2的大小.26.如图,在中,AB=2AD,DE平分∠ADC,交AB于点E,交CB的延长线于点F,EG∥AD交DC于点G.⑴求证:四边形AEGD为菱形;⑵若,AD=2,求DF的长.

参考答案一、选择题(每题4分,共48分)1、D【解析】

A.正确,只要证明即可;B.正确,只要证明进而得到是等边三角形,进而得到结论;C.正确,只要证明得出是等边三角形,因为的周长为,所以等边三角形的边长最小时,的周长最小,只要求出的边长最小值即可;D.错误,当时,,由此即可判断.【详解】A正确,理由如下:都是等边三角形,B正确,理由如下:是等边三角形,同理是等边三角形,C正确,理由如下:是等边三角形,的周长为:,等边三角形边长最小时,的周长最小,当时,DE最小为,的周长最小值为.D错误,当时,,此时时变化的不是定值,故错误.故选D.【点睛】本题主要考查全等的判定的同时,结合等边三角形的性质,涉及到最值问题,仔细分析图形,明确图形中的全等三角形是解决问题的关键.2、D【解析】试题分析:丁的平均数最大,方差最小,成绩最稳当,所以选丁运动员参加比赛.故选D.考点:方差;加权平均数.3、B【解析】

根据算术平方根的定义对A进行判断;根据二次根式的性质对B进行判断;根据立方根的定义对C进行判断;根据平方根的定义对D进行判断【详解】A.=4,此项错误B.=2正确C.=3,此项错误D.=,此项错误故选B【点睛】本题考查了二次根式的混合运算,熟练掌握题目的定义是解题的关键4、D【解析】A、∵线段OA表示所跑的路程S(米)与所用时间t(秒)之间的函数图象,∴小莹的速度是没有变化的,故选项错误;B、∵小莹比小梅先到,∴小梅的平均速度比小莹的平均速度小,故选项错误;C、∵起跑后180秒时,两人的路程不相等,∴他们没有相遇,故选项错误;D、∵起跑后50秒时OB在OA的上面,∴小梅是在小莹的前面,故选项正确.故选D.5、D【解析】

根据分式有意义分母不能为零即可解答.【详解】∵分式有意义,∴x+2≠0,∴x≠-2.故选:D.【点睛】本题考查了分式有意义的条件,分式分母不能为零是解题的关键点.6、A【解析】

设每人每小时的绿化面积为x平方米,等量关系为:6名工人比8名工人完成任务多用3小时,据此列方程即可.【详解】解:设每人每小时的绿化面积为x平方米,

由题意得,故选:A.【点睛】本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.7、B【解析】

根据加权平均数的公式进行计算即可得.【详解】=37,即这周里张海日平均投递物品件数为37件,故选B.【点睛】本题考查了加权平均数的计算,熟知加权平均数的计算公式是解题的关键.8、C【解析】【分析】设游客人数的年平均增长率为x,由2015年约为12万人次,到2017年约为17万人次,增长了2次,可列出方程.【详解】设游客人数的年平均增长率为x,由2015年约为12万人次,到2017年约为17万人次,增长2次,可列出方程12(1+x)2=17.故选C【点睛】本题考核知识点:列一元二次方程解应用题.解题关键点:找出相等关系,列方程.9、A【解析】

根据不等式解集的表示方法即可判断.【详解】解:解不等式①得:x>-1,

解不等式②得:x≤2,

∴不等式组的解集是-1<x≤2,

表示在数轴上,如图所示:

故选:A.【点睛】此题考查解一元一次不等式,解一元一次不等式组的应用,解此题的关键是求出不等式组的解集.10、C【解析】

根据三角形的中位线定理可以证得DE∥BC,则△ADE∽△ABC,根据相似三角形的性质即可求解【详解】解:∵D、E分别是AB和AC的中点,

∴DE∥BC,且,即,

∴△ADE∽△ABC,

∴∴△ADE的周长是:.故选:C.【点睛】本题考查了三角形中位线定理以及相似三角形的性质定理,理解定理是关键.11、B【解析】

根据正方形的边长以及七巧板的特点先求出七巧板各个图形的边长,继而即可求得六边形的周长.【详解】解:如图,七巧板各图形的边长如图所示,则六边形EFGHMN的周长为:2+2++2+2+2++2=10+4,故选B.【点睛】本题考查了正方形的面积、七巧板、周长的定义等,七巧板由下面七块板组成(完整图案为一正方形):五块等腰直角三角形(两块小型小三角形,一块中型三角形和两块大型三角形)、一块正方形和一块平行四边形,熟知七巧板中各块中的边长之间的关系是解题的关键.12、C【解析】试题分析:根据余角的定义,即可解答.解:∵∠C=90°,∴∠A+∠B=90°,∵∠B=∠ADE,∴∠A+∠ADE=90°,∴∠A和∠ADE互为余角.故选C.考点:余角和补角.二、填空题(每题4分,共24分)13、【解析】

观察分析可得,,,则将此规律用含自然数n(n≥1)的等式表示出来是【详解】由分析可知,发现的规律用含自然数n(n≥1)的等式表示出来是故答案为:【点睛】本题主要考查二次根式,找出题中的规律是解题的关键,观察各式,归纳总结得到一般性规律,写出用n表示的等式即可.14、<【解析】

方差用来计算每一个变量(观察值)与总体均数之间的差异,所以从图像看苗高的波动幅度,可以大致估计甲、乙两块地苗高数据的方差.【详解】解:由图可知,甲、乙两块地的苗高皆在12cm上下波动,但乙的波动幅度比甲大,∴则故答案为:<【点睛】本题考查了方差,方差反映了数据的波动程度,方差越大,数据的波动越大,正确理解方差的含义是解题的关键.15、【解析】

求出形变前正方形的面积,形变后菱形的面积,两面积之比=菱形的“形变度”,求△AEF的面积,根据两面积之比=菱形的“形变度”,即可解答.【详解】如图,在图2中,形变前正方形的面积为:a2,形变后的菱形的面积为:∴菱形形变前的面积与形变后的面积之比:∵这个菱形的“形变度”为2:,∴菱形形变前的面积与形变后的面积之比=这个菱形的“形变度”,∵若这个菱形的“形变度”k=,∴即∴S△A′E′F′=.故答案为:.【点睛】考查菱形的性质,读懂题目中菱形的“形变度”的概念是解题的关键.16、k≥1且k≠3.【解析】

分式方程去分母转化为整式方程,由分式方程的解为非正数,确定出k的范围即可.【详解】去分母得:x+k+2x=x+1,

解得:x=,

由分式方程的解为非正数,得到⩽0,且≠−1,

解得:k≥1且k≠3,

故答案为k≥1且k≠3.【点睛】本题考查的是分式方程,熟练掌握分式方程是解题的关键.17、乙对角线互相平分的四边形是平行四边形【解析】

根据平行四边形的判定方法,即可解决问题.【详解】根据平行四边形的判定方法,我更喜欢乙的作法,他的作图依据是:对角线互相平分的四边形是平行四边形.故答案为:乙;对角线互相平分的四边形是平行四边形.【点睛】本题主要考查尺规作图-复杂作图,平行四边形的判定定理,掌握尺规作线段的中垂线以及平行四边形的判定定理,是解题的关键.18、对角线互相垂直平分的四边形是菱形【解析】

解:如图,连接DF、DE.根据折叠的性质知,CD⊥EF,且OD=OC,OE=OF.则四边形DECF恰为菱形.所以小明这样折叠的依据是:对角线互相垂直平分的四边形是菱形.三、解答题(共78分)19、(1)画图略,A’(2,1)(2)(1,0)或(-1,-6)或(-5,-2)【解析】

(1)找到三角形各顶点与原点对称点,再连接各点即可;(2)根据平行四边形的性质即可在直角坐标系中找到D点.【详解】(1)如图,△A′B′C′为所求,A’(2,1)(2)如图,D的坐标为(1,0)或(-1,-6)或(-5,-2)【点睛】此题主要考查坐标与图形,解题的关键是熟知直角坐标系的坐标特点.20、(1),;(2)【解析】

(1)根据是的中点,得到,再根据菱形的性质得到是等边三角形,得到BD的长,再利用勾股定理进而可以求出AO的长度,根据AC=2AO得到答案;(2)根据菱形的面积等于两对角线的积的一半,列式求解即可得到答案;【详解】解:(1)为的中点,,菱形中,,,是等边三角形,,,;(2)菱形的面积;【点睛】本题主要考查了菱形的性质、菱形的面积计算、等边三角形的判定与性质,掌握菱形的面积=两对角线的积的一半是解题的关键;21、(1)点P不在这个一次函数的图象上;(2)的周长.【解析】

(1)先设出一次函数的解析式,把已知条件代入求得未知数的值即可求出解析式;再把点P(−1,1)代入解析式看是否成立;(2)先根据等边三角形的性质得∠BAC=60°,AB=AC,再根据旋转的性质得到AD=AE,CE=BD=14,∠DAE=∠BAC=60°,则可判断△ADE为等边三角形,从而得到DE=AD=10,然后计算△DEC的周长.【详解】解:(1)设一次函数的表达式为,则,解得:,.∴函数的解析式为:.将点代入函数解析式,,∴点P不在这个一次函数的图象上.(2)为等边三角形,,,绕点A逆时针旋转到的位置,,,,为等边三角形,,的周长.【点睛】本题考查了一次函数图象上点的坐标特征以及待定系数法求解析式,要注意利用一次函数的特点,列出方程组,求出未知数即求得解析式.也考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.22、(1)5;(2);(3)当或时,⊿OCQ是等腰三角形.【解析】

(1)利用勾股定理先求出AC的长,继而根据已知条件即可求得答案;(2)延长QO交AD于点E,连接PE、PQ,先证明△AEO≌△CQO,从而得OE=OQ,AE=CQ=y,由垂直平分线的性质可得PE=PQ,即,在Rt⊿EDP中,有,在Rt⊿PCQ中,,继而可求得答案;(3)分CQ=CO,OQ=CQ,OQ=OC三种情况分别进行讨论即可求得答案.【详解】(1)∵四边形ABCD是长方形,∴∠ABC=90°,∴,∴OB=OA=OC=;(2)延长QO交AD于点E,连接PE、PQ,∵四边形ABCD是长方形,∴CD=AB=6,AD=BC=8,AD//BC,∴∠AEO=∠CQO,在△COQ和△AOE中,,∴△AEO≌△CQO(SAS),∴OE=OQ,AE=CQ=y,∴ED=AD-AE=8-y,∵OP⊥OQ,∴OP垂直平分EQ,∴PE=PQ,∴,∵PD=x,∴CP=CD-CP=6-x,在Rt⊿EDP中,,在Rt⊿PCQ中,,∴,∴;(3)分三种情况考虑:①如图,若CQ=CO时,此时CQ=CO=5;②如图,若OQ=CQ时,作OF⊥BC,垂足为点F,∵OB=OC,OF⊥BC,∴BF=CF=BC=4,∴,∵OQ=CQ,∴,∴,∴,∴;③若OQ=OC时,此时点Q与点B重合,点P在DC延长线上,此情况不成立,综上所示,当或时,⊿OCQ是等腰三角形.【点睛】本题考查了矩形的性质,全等三角形的判定与性质,勾股定理的应用,一次函数的应用等,准确识图,熟练掌握和灵活运用相关知识是解题的关键.23、摩托车的速度是40km/h,抢修车的速度是60km/h.【解析】试题分析:设摩托车的是xkm/h,那么抢修车的速度是1.5xkm/h,根据供电局的电力维修工要到30千米远的郊区进行电力抢修.技术工人骑摩托车先走,15分钟后,抢修车装载着所需材料出发,结果他们同时到达可列方程求解.试题解析:设摩托车的是xkm/h,30x=40经检验x=40是原方程的解.40×1.5=60(km/h).摩托车的速度是40km/h,抢修车的速度是60km/h.考点:分式方程的应用.24、(1);(2),18;(3)第5日的销售利润最大,最大销售利润为1650元.【解析】

(1)根据题意和函数图象中的数据,可利用待定系数法求得y与x的函数关系式,并写出x的取值范围;(2)根据题意和(1)中的函数关系式可以写出w与x的函数关系式,求得日销售利润不超过1950元的天数;(3)根据题意和(2)中的关系式分别求出当时和当时的最大利润,问题得解.【详解】(1)当1≤x≤10时,设y与x的函数关系式为y=kx+b,则,解得:,即当1≤x≤10时,y与x的函数关系式为y=−30x+480,当10<x≤30时,设y与x的函数关系式为y=mx+n,则,解得:即当10<x≤30时,y与x的函数关系式为y=21x−30,综上可得,;(2)由题意可得:令,解得.令,解得.∴(天).答:日销售利润不超过1950元的共有18天.(3)①当时,,∴当时,.②当时,,∴当时,.综上所述:当时,.即第5日的销售利润最大,最大销售利润为1650元.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和分类讨论的数学思想解答.25、(1)见解析;(2)y1>y2.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论