江西省南昌市2024年数学八年级下册期末达标检测模拟试题含解析_第1页
江西省南昌市2024年数学八年级下册期末达标检测模拟试题含解析_第2页
江西省南昌市2024年数学八年级下册期末达标检测模拟试题含解析_第3页
江西省南昌市2024年数学八年级下册期末达标检测模拟试题含解析_第4页
江西省南昌市2024年数学八年级下册期末达标检测模拟试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江西省南昌市2024年数学八年级下册期末达标检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.边长是4且有一个内角为60°的菱形的面积为()A.2 B.4 C.8 D.162.如图,在平面直角坐标系中,四边形ABCD是菱形,点A的坐标为(0,),分别以A,B为圆心,大于AB的长为半径作弧,两弧交于点E,F,直线EF恰好经过点D,则点D的坐标为()A.(2,2) B.(2,) C.(,2) D.(+1,3.一次函数与的图象如图所示,则下列结论:①k<0;②a<0,b<0;③当x=3时,y1=y2;④不等式的解集是x<3,其中正确的结论个数是()A.0 B.1 C.2 D.34.如图,在ΔABC中,AB=3,BC=2,D、E、F分别为AB、BC、AC的中点,连接DF、FE,则四边形DBEF的周长是()A.5 B.7 C.9 D.115.一元二次方程x2﹣6x﹣5=0配方可变形为()A.(x﹣3)2=14 B.(x﹣3)2=4 C.(x+3)2=14 D.(x+3)2=46.已知关于x的一元二次方程x2+mx﹣8=0的一个实数根为2,则另一实数根及m的值分别为()A.4,﹣2 B.﹣4,﹣2 C.4,2 D.﹣4,27.下列条件中,不能判断一个三角形是直角三角形的是()A.三个角的比为1:2:3 B.三条边满足关系a2=b2﹣c2C.三条边的比为1:2:3 D.三个角满足关系∠B+∠C=∠A8.正方形具有而菱形不具有的性质是()A.对角线互相平分 B.对角线相等C.对角线平分一组对角 D.对角线互相垂直9.已知:x1,x2,x3...x10的平均数是a,x11,x12,x13...x50的平均数是b,则x1,x2,x3...x50的平均数是()A.a+b B. C. D.10.下列语句:①每一个外角都等于60∘A.1 B.2 C.3 D.411.使有意义的x的取值范围是()A.x≤3 B.x<3 C.x≥3 D.x>312.寓言故事《乌鸦喝水》教导我们遇到困难要运用智慧、认真思考才能让问题迎刃而解.如图,一个紧口瓶中盛有一些水,可乌鸦的嘴够不到瓶中的水.于是乌鸦衔来一些小石子放入瓶中,瓶中的水面高度得到提升.由于放入的石子较多,水都快溢出来了,乌鸦成功喝到了水,如果衔入瓶中石子的体积为,水面高度为,下面图象能大致表示该故事情节的是()A. B. C. D.二、填空题(每题4分,共24分)13.D、E、F分别是△ABC各边的中点.若△ABC的周长是12cm,则△DEF的周长是____cm.14.《算法统宗》记载古人丈量田地的诗:“昨日丈量地回,记得长步整三十.广斜相并五十步,不知几亩及分厘.”其大意是:昨天丈量了田地回到家,记得长方形田的长为30步,宽和对角线之和为50步.不知该田有几亩?请我帮他算一算,该田有___亩(1亩=240平方步).15.若,则的取值范围为_____.16.化简:_____.17.分解因式___________18.甲、乙两车分别从A、B两地同时出发,相向行驶,已知甲车的速度大于乙车的速度,甲车到达B地后马上以另一速度原路返回A地(掉头的时间忽略不计),乙车到达A地以后即停在地等待甲车.如图所示为甲乙两车间的距离y(千米)与甲车的行驶时间t(小时)之间的函数图象,则当乙车到达A地的时候,甲车与A地的距离为_____千米.三、解答题(共78分)19.(8分)解不等式组,并把不等式组的解集在数轴上表出来20.(8分)如图,在平面直角坐标系中,直线y=-x+8分别交两轴于点A,B,点C的横坐标为4,点D在线段OA上,且AD=7.(1)求点D的坐标;(2)求直线CD的解析式;(3)在平面内是否存在这样的点F,使以A,C,D,F为顶点的四边形为平行四边形?若存在,请求出点F的坐标;若不存在,不必说明理由.21.(8分)某农户种植一种经济作物,总用水量y(米3)与种植时间x(天)之间的函数关系式如图所示.(1)第20天的总用水量为多少米3?(2)当x≥20时,求y与x之间的函数关系式;(3)种植时间为多少天时,总用水量达到7000米3?22.(10分)计算(1)计算:(2)分解因式:23.(10分)如图,点M是△ABC内一点,过点M分别作直线平行于△ABC的各边,所形成的三个小三角形△1、△2、△3(图中阴影部分)的面积分别是1、4、1.则△ABC的面积是.24.(10分)计算(1)(2)(3)25.(12分)如图1,在平行四边形中,(),垂足为,所在直线,垂足为.(1)求证:(2)如图2,作的平分线交边于点,与交于点,且,求证:26.已知关于x、y的方程组的解都小于1,若关于a的不等式组恰好有三个整数解;⑴分别求出m与n的取值范围;⑵请化简:。

参考答案一、选择题(每题4分,共48分)1、C【解析】

根据菱形内角度数及边长求出一边上的高,利用边长乘以高即可求出面积.【详解】解:如图,过点A作AE⊥BC于点E,∵∴.∴菱形面积为4×2=8.故选:C.【点睛】本题主要考查菱形的面积,能够求出菱形边上的高是解题的关键.2、B【解析】

连接DB,如图,利用基本作图得到EF垂直平分AB,则DA=DB,再根据菱形的性质得到AD∥BC,AD=AB,则可判断△ADB为等边三角形,所以∠DAB=∠ABO=60°,然后计算出AD=2,从而得到D点坐标.【详解】连接DB,如图,由作法得EF垂直平分AB,∴DA=DB,∵四边形ABCD是菱形,∴AD∥BC,AD=AB,∴AD=AB=DB,∴△ADB为等边三角形,∴∠DAB=60°,∴∠ABO=60°,∵A(0,),∴OA=,∴OB=OA=1,AB=2OB=2,∴AD=AB=2,而AD平行x轴,∴D(2,).故选:B.【点睛】考查了作图﹣基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了线段垂直平分线的性质和菱形的性质3、D【解析】

解:根据一次函数的图象可得:a<0,b>0,k<0,则①正确,②错误;根据一次函数和方程以及不等式的关系可得:③和④是正确的故选:D.【点睛】本题考查一次函数的图象及一次函数与不等式.4、A【解析】

先根据三角形中位线性质得DF=12BC=1,DF∥BC,EF=12AB=32,EF∥AB【详解】解:∵D、E、F分别为AB、BC、AC中点,

∴DF=12BC=1,DF∥BC,EF=12AB=32,EF∥AB,

∴四边形DBEF为平行四边形,

∴四边形DBEF的周长=2(DF+EF)=2×(1+32)=1.【点睛】本题考查三角形中位线定理和四边形的周长,解题的关键是掌握三角形中位线定理.5、A【解析】

根据配方法解一元二次方程的步骤计算即可.【详解】解:移项得:x2-6x=-5,两边同时加上9得:x2-6x+9=4,即(x-3)2=4,故选B.【点睛】本题考查配方法解一元二次方程,熟练掌握配方法的步骤是关键.6、D【解析】试题分析:由根与系数的关系式得:,=﹣2,解得:=﹣4,m=2,则另一实数根及m的值分别为﹣4,2,故选D.考点:根与系数的关系.7、C【解析】试题分析:选项A,三个角的比为1:2:3,设最小的角为x,则x+2x+3x=180°,x=30°,3x=90°,选项A正确;选项B,三条边满足关系a2=b2-c2,根据勾股定理的逆定理可得选项B正确;选项C,三条边的比为1:2:3,12+22≠32,选项C错误;选项D,三个角满足关系∠B+∠C=∠A,则∠A为90°,选项D正确.故答案选C.考点:三角形的内角和定理;勾股定理的逆定理.8、B【解析】

根据正方形和菱形的性质逐项分析可得解.【详解】根据正方形对角线的性质:平分、相等、垂直;菱形对角线的性质:平分、垂直,故选B.【点睛】考点:1.菱形的性质;2.正方形的性质.9、D【解析】

根据平均数及加权平均数的定义解答即可.【详解】∵x1,x2,x3...x10的平均数是a,x11,x12,x13...x50的平均数是b,∴x1,x2,x3...x50的平均数是:.故选D.【点睛】本题考查了平均数及加权平均数的求法,熟练运用平均数及加权平均数的定义求解是解决问题的关键.10、C【解析】

根据多边形的外角,反证法的定义,等腰三角形的性质与判定,分式有意义的条件,进行逐一判定分析,即可解答.【详解】①每一个外角都等于60°的多边形是六边形,正确;②“反证法”就是从反面的角度思考问题的证明方法,故错误;③“等腰三角形两底角相等”的逆命题是有两个角相等的三角形为等腰三角形,是真命题,正确;④分式值为零的条件是分子为零且分母不为零,故正确;正确的有3个.故选C.【点睛】此题考查命题与定理,解题关键在于掌握各性质定理.11、C【解析】分析:先根据二次根式有意义的条件列出关于x的不等式,求出x的取值范围即可.详解:∵式子有意义,∴x-1≥0,解得x≥1.故选C.点睛:本题考查的是二次根式有意义的条件,熟知二次根式具有非负性是解答此题的关键.12、D【解析】

根据题意可以分析出各段过程中h与t的函数关系,从而可以解答本题.【详解】解:由题意可得,

刚开始瓶子内盛有一些水,则水面的高度大于0,故选项A,B错误,

然后乌鸦衔来一些小石子放入瓶中,瓶中的水面高度随着t的增加缓慢增加,当水面与瓶子竖直部分持平时,再继续上升的过程中,h与t成一次函数图象,故选项C错误,选项D正确,

故选:D.【点睛】本题考查函数图象,解答本题的关键是明确题意,利用数形结合的思想解答.二、填空题(每题4分,共24分)13、1【解析】如图所示,∵D、E分别是AB、BC的中点,∴DE是△ABC的中位线,∴DE=AC,同理有EF=AB,DF=BC,∴△DEF的周长=(AC+BC+AB)=×12=1cm,故答案为:1.14、1.【解析】

根据矩形的性质、勾股定理求得长方形的宽,然后由矩形的面积公式解答.【详解】设该矩形的宽为x步,则对角线为(50﹣x)步,由勾股定理,得301+x1=(50﹣x)1,解得x=16故该矩形的面积=30×16=480(平方步),480平方步=1亩.故答案是:1.【点睛】考查了勾股定理的应用,此题利用方程思想求得矩形的宽.15、【解析】

根据二次根式的性质可知,开方结果大于等于0,于是1-a≥0,解不等式即可.【详解】∵,∴1−a≥0,∴a≤1,故答案是a≤1.【点睛】本题考查二次根式的性质与化简,能根据任意一个非负数的算术平方根都大于等于0得出1−a≥0是解决本题的关键.16、【解析】

算术平方根的定义:一个非负数的正的平方根,即为这个数的算术平方根,由此即可求出结果.【详解】8的算术平方根为.∴故答案为:.【点睛】此题考查算术平方根的定义,解题关键在于掌握其定义.17、【解析】

原式提取公因式,再利用完全平方公式分解即可.【详解】原式=2x(y2+2y+1)=2x(y+1)2,故答案为2x(y+1)2【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.18、630【解析】分析:两车相向而行5小时共行驶了900千米可得两车的速度之和为180千米/时,当相遇后车共行驶了720千米时,甲车到达B地,由此则可求得两车的速度.再根据甲车返回到A地总用时16.5小时,求出甲车返回时的速度即可求解.详解:设甲车,乙车的速度分别为x千米/时,y千米/时,甲车与乙车相向而行5小时相遇,则5(x+y)=900,解得x+y=180,相遇后当甲车到达B地时两车相距720千米,所需时间为720÷180=4小时,则甲车从A地到B需要9小时,故甲车的速度为900÷9=100千米/时,乙车的速度为180-100=80千米/时,乙车行驶900-720=180千米所需时间为180÷80=2.25小时,甲车从B地到A地的速度为900÷(16.5-5-4)=120千米/时.所以甲车从B地向A地行驶了120×2.25=270千米,当乙车到达A地时,甲车离A地的距离为900-270=630千米.点睛:利用函数图象解决实际问题,其关键在于正确理解函数图象横,纵坐标表示的意义,抓住交点,起点.终点等关键点,理解问题的发展过程,将实际问题抽象为数学问题,从而将这个数学问题变化为解答实际问题.三、解答题(共78分)19、-4≤x<3,见解析【解析】

解一元一次不等式组求解集,并把不等式的解集在数轴上表示出来即可.【详解】解:解不等式①,得解不等式②,得原不等式组的解集为:在数轴上表示为:【点睛】本题考查了一元一次不等式组的解法和在数轴上表示不等式的解集,能够正确表示不等式组的解集是解题的关键.20、(1)点D(1,0);(2)y=43x-43;(3)点F的坐标是(11,4)【解析】

(1)首先根据直线y=-x+8分别交两轴于点A、B,可得点A的坐标是(8,0),点B的坐标是(0,8),然后根据点D在线段OA上,且AD=7,即可求出点D的坐标;(2)利用待定系数法可求直线CD的解析式;(3)设点F(x,y),分情况讨论,由平行四边形的性质和中点坐标公式,可求出点F的坐标.【详解】解:(1)∵直线y=-x+8分别交两轴于点A,B,∴当x=0时,y=8,当y=0时,x=8∴点A(8,0),点B(0,8)∵点D在线段OA上,且AD=7.∴点D(1,0)(2)∵点C的横坐标为4,且在直线y=-x+8上,∴y=-4+8=4,∴点C(4,4)设直线CD的解析式y=kx+b∴4=4k+b0=k+b,解得:∴直线CD解析式为:y=43(3)设点F(x,y)①若以CD,AD为边,∵四边形ADCF是平行四边形,∴AC,DF互相平分,∵点A(8,0),点D(1,0),点C(4,4),点F(x,y)∴4+82=1+x∴点F(11,4)②若以AC,AD为边∵四边形ADFC是平行四边形,∴AF,CD互相平分,∵点A(8,0),点D(1,0),点C(4,4),点F(x,y)∴8+x2=4+1∴点F(-3,4)③若以CD,AC为边,∵四边形CDFA是平行四边形,∴AD,CF互相平分,∵点A(8,0),点D(1,0),点C(4,4),点F(x,y)∴1+82=4+x∴点F(5,-4)综上所述:点F的坐标是(11,4),(5,-4),(-3,4).【点睛】此题考查平行四边形的性质,中点坐标公式,求一次函数的解析式,解题关键在于分情况讨论.21、(1)1000;(2)y=300x﹣5000;(3)40【解析】

根据题意得出第20天的总用水量;y与x的函数关系式为分段函数,则需要分两段分别求出函数解析式;将y=7000代入函数解析式求出x的值.【详解】(1)第20天的总用水量为1000米3当0<x<20时,设y=mx∵函数图象经过点(20,1000),(30,4000)∴m=50y与x之间的函数关系式为:y=50x当x≥20时,设y=kx+b∵函数图象经过点(20,1000),(30,4000)∴1000=20k+b4000=30k+b解得k=300b=-5000∴y与x(3)当y=7000时,有7000=300x﹣5000,解得x=40考点:一次函数的性质22、(1);(2).【解析】

(1)原式第一项利用多项式乘以多项式法则计算,第二项利用多项式除以单项式法则计算即可得到结果;

(2)原式提取公因式,再利用完全平方公式分解即可.【详解】(1)原式=2a2−2ab+ab−b2−2a2+ab=−b2;(2)原式=-xy(x2-4xy+4y2)=−xy(x−2y)2.【点睛】本题考查的知识点是整式的混合运算,提公因式法与公式法的综合运用,解题的关键是熟练的掌握整式的混合运算,提公因式法与公式法的综合运用.23、64【解析】

试题分析:根据平行可得三个三角形相似,再由它们的面积比等于相似比的平方,设其中一边为一求未知数,然后计算出最大的三角形与最小的三角形的相似比,从而求面积比.【详解】如图,,过M作BC的平行线交AB,AC于D,E,过M作AC平行线交AB,BC于F,H,过M作AB平行线交AC,BC于I,G,根据题意得,△1∽△2∽△3,∵S△1:S△2=1:4,S△1:S△3=1:1,∴DM:EM:GH=1:2:5,又∵四边形BDMG与四边形CEMH为平行四边形,∴DM=BG,EM=CH,设DM为x,则BC=BG+GH+CH=x+5x+2x=8x,∴BC:DM=8:1,∴S△ABC:S△FDM=64:1,∴S△ABC=1×64=64,故答案为:64.24、(1)(2)(3)【解析】

(1)先把各二

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论