版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024年贵州省思南县联考八年级下册数学期末检测试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.如图,矩形内三个相邻的正方形面积分别为4,3和2,则图中阴影部分的面积为()A.2 B.C. D.2.如果一组数据为1,5,2,6,2,则这组数据的中位数为()A.6 B.5 C.2 D.13.《九章算术》中的“折竹抵地”问题:一根竹子高丈(丈尺),折断后竹子顶端落在离竹子底端尺处,折断处离地面的高度是多少?()A. B. C. D.4.下列式子中,a取任何实数都有意义的是()A.1a2+1 B.1a5.等边三角形的边长为2,则该三角形的面积为()A. B.2 C.3 D.46.在平面直角坐标系中,A,B,C三点坐标分别是(0,0),(4,0),(3,2),以A,B,C三点为顶点画平行四边形,则第四个顶点不可能在().A.第一象限 B.第二象限 C.第三象限 D.第四象限7.在同一平面直角坐标系内,将函数的图象沿x轴方向向右平移2个单位长度后再沿y轴向下平移1个单位长度,得到图象的顶点坐标是()A.(,1) B.(1,) C.(2,) D.(1,)8.如图所示,已知:点A(0,0),B(,0),C(0,1).在△ABC内依次作等边三角形,使一边在x轴上,另一个顶点在BC边上,作出的等边三角形分别是第1个△AA1B1,第2个△B1A2B2,第3个△B2A3B3,…,则第n个等边三角形的边长等于()A. B. C. D.9.如图,矩形ABCD,对角线AC、BD交于点O,AE⊥BD于点E,∠AOB=45°,则∠BAE的大小为()
A.15° B.22.5° C.30° D.45°10.将矩形按如图所示的方式折叠,得到菱形.若,则的长是()A.1 B. C. D.211.如果代数式有意义,那么x的取值范围是()A.x≥0 B.x≠1 C.x>1 D.x≥0且x≠112.小明乘出租车去体育场,有两条路线可供选择:路线一的全程是25千米,但交通比较拥堵,路线二的全程是30千米,平均车速比走路线一时的平均车速能提高80%,因此能比走路线一少用10分钟到达.若设走路线一时的平均速度为x千米/小时,根据题意,得A. B.C. D.二、填空题(每题4分,共24分)13.已知点与点关于y轴对称,则__________.14.关于x的分式方程有增根,则a=_____.15.若分式的值为0,则x的值是_____.16.等腰三角形的腰长为5,底边长为8,则它底边上的高为_______,面积为________.17.某种数据方差的计算公式是,则该组数据的总和为_________________.18.函数的图像与如图所示,则k=__________.三、解答题(共78分)19.(8分)已知一次函数的图象经过点和.(1)求这个一次函数的解析式(2)不等式的解集是.(直接写出结果即可)20.(8分)计算题:(1);(2)已知,,求代数式的值.21.(8分)某服装店准备购进甲、乙两种服装出售,甲种每件售价120元,乙种每件售价90元.每件甲服装的进价比乙服装的进价贵20元,购进3件甲服装的费用和购进4件乙服装的费用相等,现计划购进两种服装共100件,其中甲种服装不少于65件.(1)甲种服装进价为元/件,乙种服装进价为元/件;(2)若购进这100件服装的费用不得超过7500元.①求甲种服装最多购进多少件?②该服装店对甲种服装每件降价元,乙种服装价格不变,如果这100件服装都可售完,那么该服装店如何进货才能获得最大利润?22.(10分)如图,点在等边三角形的边上,将绕点旋转,使得旋转后点的对应点为点,点的对应点为点,请完成下列问题:(1)画出旋转后的图形;(2)判断与的位置关系并说明理由.23.(10分)如图,、分别为的边、的中点,,延长至点,使得,连接、、.若时,求四边形的周长.24.(10分)如图,中,.(1)请用尺规作图的方法在边上确定点,使得点到边的距离等于的长;(保留作用痕迹,不写作法)(2)在(1)的条件下,求证:.25.(12分)如图,在四边形ABCD中,AD∥BC,∠ADC=90°,BC=8,DC=6,AD=10,动点P从点D出发,沿线段DA的方向以每秒2个单位长的速度运动,动点Q从点C出发,在线段CB上以每秒1个单位长的速度向点B运动,点P,Q分别从点D,C同时出发,当点P运动到点A时,点Q随之停止运动,设运动的时间为t(秒)。(1)当点P运动t秒后,AP=____________(用含t的代数式表示);(2)若四边形ABQP为平行四边形,求运动时间t;(3)当t为何值时,△BPQ是以BQ或BP为底边的等腰三角形;26.随着信息技术的迅猛发展,人们去商场购物的支付方式更加多样、便捷,在一次购物中,张华和李红都想从“微信”、“支付宝”、“银行卡”、“现金”四种支付方式中选一种方式进行支付.(1)张华用“微信”支付的概率是______.(2)请用画树状图或列表法求出两人恰好选择同一种支付方式的概率.(其中“微信”、“支付宝”、“银行卡”、“现金”分别用字母“A”“B”“C”“D”代替)
参考答案一、选择题(每题4分,共48分)1、D【解析】
将面积为2和3的正方形向下平移至下方边长和长方形的长边重合,可得两个阴影部分的图形的长和宽,计算可得答案.【详解】将面积为2和3的正方形向下平移至下方边长和长方形的长边重合,如下图所示:则阴影面积===故选:D【点睛】本题考查算术平方根,解答本题的关键是明确题意,求出大小正方形的边长,利用数形结合的思想解答.2、C【解析】
将这组数据是从小到大排列,找到最中间的那个数即可.【详解】将数据从小到大重新排列为:1,2,2,5,6,
所以这组数据的中位数为:2,故答案为:C.【点睛】此题考查了中位数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数).3、A【解析】
根据题意画出图形,设折断处离地面的高度为x,则AB=10-x,AC=x,BC=6,进而根据勾股定理建立方程求解即可.【详解】根据题意可得如下图形:设折断处A离地面的高度为x,则AB=10-x,AC=x,BC=6,∴,解得:,故选:A.【点睛】本题主要考查了勾股定理的运用,熟练掌握相关公式是解题关键.4、A【解析】
直接利用分式和二次根式有意义的条件分析得出答案.【详解】A、1a2+1,无论a为何值,a2+1B、1a2-1,aC、aa-1,a-1D、1a2,当故选A.【点睛】此题主要考查了分式和二次根式有意义的条件,正确把握定义是解题关键.5、A【解析】分析:如图,作CD⊥AB,则CD是等边△ABC底边AB上的高,根据等腰三角形的三线合一,可得AD=1,所以,在直角△ADC中,利用勾股定理,可求出CD的长,代入面积计算公式,解答出即可;详解:作CD⊥AB,
∵△ABC是等边三角形,AB=BC=AC=2,
∴AD=1,
∴在直角△ADC中,
CD===,
∴S△ABC=×2×=;
故选A.点睛:本题主要考查了等边三角形的性质及勾股定理的应用,根据题意,画出图形可利于解答,体现了数形结合思想.6、C【解析】A点在原点上,B点在横轴上,C点在第一象限,根据平行四边形的性质:两组对边分别平行,可知第四个顶点可能在第一、二、四象限,不可能在第三象限,故选C7、B【解析】由原抛物线的顶点坐标,根据横坐标与纵坐标“左加右减”可得到平移后的顶点坐标:∵y=2x2+4x+1=2(x2+2x)+1=2[(x+1)2﹣1]+1=2(x+1)2﹣1,∴原抛物线的顶点坐标为(﹣1,﹣1).∵将函数的图象沿x轴方向向右平移2个单位长度后再沿y轴向下平移1个单位长度,其顶点坐标也作同样的平移,∴平移后图象的顶点坐标是(﹣1+2,﹣1-1),即(1,﹣2).故选B.8、A【解析】
根据题目已知条件可推出,AA1=OC=,B1A2=A1B1=,依此类推,第n个等边三角形的边长等于.【详解】解:∵OB=,OC=1,
∴BC=2,
∴∠OBC=30°,∠OCB=60°.
而△AA1B1为等边三角形,∠A1AB1=60°,
∴∠COA1=30°,则∠CA1O=90°.
在Rt△CAA1中,AA1=OC=,同理得:B1A2=A1B1=,依此类推,第n个等边三角形的边长等于.【点睛】本题主要考查等边三角形的性质及解直角三角形,从而归纳出边长的规律.9、B【解析】
根据同角的余角相等易证∠BAE=∠ADE,根据矩形对角线相等且互相平分的性质,可得∠OAB=∠OBA,在Rt△ABD中,已知∠OBA即可求得∠ADB的大小,从而得到结果.【详解】∵四边形ABCD是矩形,AE⊥BD,
∴∠BAE+∠ABD=90°,∠ADE+∠ABD=90°,
∴∠BAE=∠ADE
∵矩形对角线相等且互相平分,
∴∠OAB=∠OBA=,
∴∠BAE=∠ADE=90﹣67.5°=22.5°,
故选B.【点睛】本题考查了矩形的性质,解题的关键是熟练掌握矩形的对角线相等且互相平分.10、A【解析】
由矩形可得是直角,由菱形的对角线平分每组对角,再由折叠可得,在直角三角形中,由边角关系可求出答案.【详解】解:由折叠得:是矩形,是菱形,,在中,,,,故选:.【点睛】本题考查矩形的性质、菱形的性质、折叠轴对称的性质以及直角三角形的边角关系等知识,求出,把问题转化到中,由特殊的边角关系可求出结果.11、C【解析】
根据二次根式中被开方数是非负数,分式分母不为零列出不等式即可求出答案.【详解】根据题意可知,解得x>1,故答案选C.【点睛】本题考查的是二次根式和分式存在有意义的条件,熟知该知识点是解题的关键.12、A【解析】若设走路线一时的平均速度为x千米/小时,根据路线一的全程是25千米,但交通比较拥堵,路线二的全程是30千米,平均车速比走路线一时的平均车速能提高80%,因此能比走路线一少用10分钟到达可列出方程.解:设走路线一时的平均速度为x千米/小时,故选A.二、填空题(每题4分,共24分)13、-1【解析】
根据“关于y轴对称的点,纵坐标相同,横坐标互为相反数”求出a、b的值,然后相加即可得解.【详解】∵点P(a,−4)与点Q(−3,b)关于y轴对称,∴a=3,b=−4,∴a+b=3+(−4)=−1.故答案为:−1.【点睛】考查关于y轴对称的点的坐标特征:纵坐标不变,横坐标互为相反数.14、a=-1【解析】
根据分式方程的解法求出方程的解,然后根据方程有增根,则x=-5,从而得出a的值.【详解】去分母可得:1+a=x+5,解得:x=a-2,∵分式方程有增根,∴x=-5,即a-2=-5,解得:a=-1.【点睛】本题主要考查的是分式方程的解得情况,属于中等难度的题型.分式方程有增根是因为整式方程的解会使得分式的分母为零.15、-2【解析】
根据分子等于零且分母不等于零列式求解即可.【详解】解:由分式的值为2,得x+2=2且x﹣2≠2.解得x=﹣2,故答案为:﹣2.【点睛】本题考查了分式的值为零的条件.若分式的值为零,需同时具备两个条件:①分子的值为2,②分母的值不为2,这两个条件缺一不可.16、31【解析】
根据等腰三角形的性质求得高的长,从而再根据面积公式求得面积即可.【详解】解:根据等腰三角形的三线合一得底边上的高也是底边的中线,则底边的一半是4,根据勾股定理求得底边上的高是3,则三角形的面积=×8×3=1.故答案为:3,1.【点睛】本题考查了等腰三角形的性质和勾股定理.综合运用等腰三角形的三线合一以及直角三角形的勾股定理是解答本题的关键.17、32【解析】
根据方差公式可知这组数据的样本容量和平均数,即可求出这组数据的总和.【详解】∵数据方差的计算公式是,∴样本容量为8,平均数为4,∴该组数据的总和为8×4=32,故答案为:32【点睛】本题考查方差及平均数的意义,一般地,设n个数据,x1、x2、…xn的平均数为x,则方差s2=[(x1-x)2+(x2-x)2+…+(xn-x)2],平均数是指在一组数据中所有数据之和再除以数据的个数.18、【解析】
首先根据一次函数y=2x与y=6-kx图象的交点纵坐标为4,代入一次函数y=2x求得交点坐标为(2,4),然后代入y=6-kx求得k值即可.【详解】∵一次函数y=2x与y=6-kx图象的交点纵坐标为2,∴4=2x,解得:x=2,∴交点坐标为(2,4),代入y=6-kx,6-2k=4,解得k=1.故答案为:1.【点睛】本题考查了两条直线平行或相交问题,解题的关键是交点坐标适合y=2x与y=6-kx两个解析式.三、解答题(共78分)19、(1);(2)x>1.【解析】
(1)将两点代入,运用待定系数法求解;
(2)把y=5代入y=2x-1解得,x=1,然后根据一次函数是增函数,进而得到关于x的不等式kx+b〉5的解集是x>1.【详解】解:(1)的图象过点,,解得:,.(2)∵k=2>0,
∴y随x的增大而增大,
把y=5代入y=2x-1解得,x=1,
∴当x>1时,函数y>5.【点睛】考查待定系数法求函数解析式,一次函数与一元一次不等式,关键是掌握数形结合思想.认真体会一次函数与一元一次不等式之间的内在联系.20、(1);(2)12.【解析】
(1)利用以及二次根式运算法则计算即可;(2)根据=计算即可.【详解】(1)=()=;(2)∵,,∴==.【点睛】本题主要考查了二次根式的化简计算,熟练掌握相关公式是解题关键.21、(1)80;60;(2)①甲种服装最多购进75件;②当时,购进甲种服装75件,乙种服装25件;当时,所有进货方案获利相同;当时,购进甲种服装65件,乙种服装35件.【解析】
(1)设乙服装的进价y元/件,则甲种服装进价为(y+20)元/件,根据题意列方程即可解答;(2)①设甲种服装购进x件,则乙种服装购进(100-x)件,然后根据购进这100件服装的费用不得超过7500元,列出不等式组解答即可;②首先求出总利润W的表达式,然后针对a的不同取值范围进行讨论,分别确定其进货方案.【详解】(1)设乙服装的进价y元/件,则甲种服装进价为元/件,根据题意得:,解得,即甲种服装进价为80元/件,乙种服装进价为60元/件;故答案为80;60;(2)①设计划购买件甲种服装,则购买件乙种服装,根据题意得,解得,甲种服装最多购进75件;②设总利润为元,购进甲种服装件.则,且,当时,,随的增大而增大,故当时,有最大值,即购进甲种服装75件,乙种服装25件;当时,所有进货方案获利相同;当时,,随的增大而减少,故当时,有最大值,即购进甲种服装65件,乙种服装35件.【点睛】本题考查了分式方程的应用,一次函数的应用,依据题意列出方程是解题的关键.22、(1)见解析;(2)AB//CE,理由见解析.【解析】
(1)直接利用旋转的性质得出对应点位置进而得出答案;(2)根据“同旁内角互补,两直线平行”进行证明即可.【详解】(1)旋转后的图形如下:①作②截取③连接(2)与的位置关系是平行,理由:由等边三角形得:由于绕点旋转到∴∴即∴【点睛】此题主要考查了旋转变换以及平行线的判定,正确应用等边三角形的性质是解题关键.23、四边形的周长为8.【解析】
根据、分别为的边、的中点,且证明四边形是平行四边形,再证明平行四边形是菱形即可求解.【详解】解:∵、分别为的边、的中点,∴.又∵,∴四边形是平行四边形.又∵,∴平行四边形是菱形.,∴,∴四边形的周长为8.【点睛】本题考查了平行四边形及菱形的判定和性质,证明四边形是菱形是解本题的关键.24、(1)见解析;(2)见解析.【解析】
(1)作出∠ABC的角平分线BM交线段AC于P,利用角平分线上的点到角的两边的距离相等可知点P即为所求;(2)过点P作PN⊥BC,交BC于点N,通过证明≌得到AB=BN,且易得PN=NC,由BC=BN+NC,等线段转化即可得证.【详解】解:(1)如图:利用尺规作图,作出∠ABC的角平分线BM交线段AC于P,则点到边的距离等于的长;(2)如图,过点P作PN⊥BC,交BC于点N,由(1)可知:PA=PN,在和中,,∴≌(HL),∴AB=BN,∵,∴∠C=45°,又∵∠PNC=90°∴∠NPC=∠C=45°,∴PN=NC,∴BC=BN+NC=AB+PN=AB+AP.【点睛】本题主要考查了利用尺规作图作一个角的角平分线,角平分线的性质及直角三角形全等的判定.熟练掌握角平分线的性质是解决本题的关键.25、(1)10-2t;(2)t=2(3)t=74或t=8【解析】
(1)根据AP=AD-DP即可写出;(2)当四边形ABQP为平行四边形时,AP=
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 福建省宁德市六校2025届高三适应性调研考试语文试题含解析
- 安徽省滁州市部分高中2025届高考仿真卷数学试题含解析
- 《保安人员礼仪规范》课件
- 黑龙江省哈尔滨第九中学2025届高三第二次模拟考试语文试卷含解析
- 8.2《登高》课件 2024-2025学年统编版高中语文必修上册
- 贵州安顺市平坝区集圣中学2025届高考语文二模试卷含解析
- 北京市延庆县2025届高三3月份第一次模拟考试英语试卷含解析
- 2025届贵州省遵义市第二教育集团高三考前热身语文试卷含解析
- 江西省景德镇市重点中学2025届高三(最后冲刺)语文试卷含解析
- 湖南省浏阳市六校联考2025届高考语文押题试卷含解析
- 开题报告:职普融通与职业教育高质量发展:从国际经验到中国路径创新
- 变、配电站防火制度范文(2篇)
- 九年级上册人教版数学期末综合知识模拟试卷(含答案)
- 商标出租合同范例
- 重大版小英小学六年级上期期末测试
- 金融科技UI设计
- 安全生产知识考试题库(有答案)-安全考试题库
- 会计助理个人年终工作总结
- 钢铁厂电工知识安全培训
- 2024年山东省菏泽市中考历史试卷
- 电解加工课件教学课件
评论
0/150
提交评论